

NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

R. D. Boardman

K. M. Lamb

L. A. Matejka

J. A. Nenni

February 2002

Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC

NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

R. D. Boardman K. M. Lamb L. A. Matejka J. A. Nenni

February 2002

Idaho National Engineering and Environmental Laboratory
High Level Waste Program
Idaho Falls, Idaho 83415

Prepared for the
U.S. Department of Energy
Assistant Secretary for Environmental Management
Under DOE Idaho Operations Office
Contract DE-AC07-99ID13727

ABSTRACT

An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid (HCl)/Cl₂ were measured in accordance with an approved Quality Assurance Project Plan (OAPiP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed, overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv (< 40 µg/dscm), while the sum of HCl and Cl₂ emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of 1e-5.

iv

SUMMARY

This report presents the 2001 effluent gas emissions inventory data for the NWCF Evaporator Tank System (ETS) operated at the INTEC. Liquid wastes generated from decontamination activities are stored in the INTEC High Level Waste Tank Farm Facility (TFF). The Tank Farm wastes are currently being concentrated using the NWCF ETS (formally known as High Level Liquid Waste Evaporator, or HLLWE). The NWCF ETS currently operates under Resource Conservation and Recovery Act (RCRA) interim status. A RCRA Part B permit application for this unit is being prepared and will be submitted in FY-2003. In order to support the permitting activities, the feed and output streams were characterized during evaporator operations in May and June, 2001. During this time, the NWCF ETS was being used to reduce the volume of a blend of two parts by volume of solution from WM-184 and one part by volume of solution from WM-181. Both of these tanks contained sodium-bearing waste (SBW).

The NWCF ETS is a single-stage, thermal siphon, batch evaporator. Dilute Tank Farm liquid wastes are semi-continuously fed to the evaporator to maintain a constant level in the evaporator. The system consists of a feed tank (VES-NCC-152), a flash column (VES-NCC-150), a reboiler (HE-NCC-350), and a condenser (VES-NCC-151). Blended tank farm wastes are added to the flash column via the feed tank. When the level in the flash column reaches its normal operating level, steam is introduced into the shell side of the evaporator reboiler. Once the desired specific gravity is reached, the concentrated solution is cooled and returned to the Tank Farm. Each batch generally requires 10-16 hours to process, followed by 10-16 hours to refill the feed tanks and to attend to waste transfers back to the Tank Farm.

The NWCF ETS overhead vapor is condensed and sent to the INTEC Process Equipment Waste Evaporator (PEWE) to be re-evaporated. Non condensable and purge gasses are vented from the feed tank and the condenser to the NWCF equipment vent system. The combined offgas passes through the NWCF high-efficiency particulate air (HEPA) filters and then through the Atmospheric Protection System (APS) before being discharged from the main INTEC stack with other vessel offgas and building ventilation air. The offgas tie-in sample location previously used to sample the NWCF Calciner offgas stream was determined to be the best location for sampling the NWCF ETS emissions.

Scope and Approach

The Tank Farm wastes are highly acidic (mainly nitric acid) and contain several RCRA metals, including mercury, and trace amounts of volatile and semi-volatile hazardous organic compounds which were introduced into the Tank Farm Facility by previous disposal of laboratory analytical wastes, NWCF Calciner scrub solution recycle, and organic solvent cleaning. Those components with low boiling points are released to the NWCF ETS offgas system during waste transfers, mixing, and evaporation. Trace amounts of heavy, nonvolatile hydrocarbons may also exist in the waste feed solutions; however, emissions of the nonvolatile hydrocarbons and also the nonvolatile metals may occur due to aerosol entrainment from the evaporator. The majority of the entrained droplets are believed to be collected in the offgas condensers, mist eliminators, and HEPA filters.

The scope of the NWCF ETS process effluent gas emissions inventory included:

- Measurement of the NWCF offgas duct velocity, temperature, and flowrate during operation of the NWCF ETS
- Manual offgas sampling and analysis for particulate matter (PM), HCl, Cl₂, selected metals, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs)
- Measurement of oxygen concentrations

Standard EPA sample collection and analysis methods were used to collect the offgas samples. Sampling was conducted following standard EPA methodology for emissions compliance testing, with attention being given to the following:

- Development and adherence to an approved project quality assurance/quality control plan
- Implementation of chain-of-custody (COC)/requests-for-analysis (RFA) and master sample collection lists that utilize and implement an in-field sample tracking and sample identification number verification
- Development of target analyte lists (TAL) and precision, accuracy, representativeness, completeness, and comparability (PARCC) data quality objectives
- Collection of samples using checklists to record train set up, sample collection data, and sample recovery steps
- Collection and analysis of reagent blanks, trip blanks, and field blanks to achieve prescribed data quality objectives
- Sample collection monitoring by a Project Quality Assurance Officer (PQAO)
- Application of EPA Solid Waste (SW)-846 and 40 Code of Federal Regulations (CFR) 60 Appendix A reference methods for sample analysis.
- Multiple reviews and verifications of field data, analytical data, process data, and resultant calculations of emissions rates

Samples of the feed were analyzed prior to initiation of processing the blend in the NWCF ETS to ensure that the chemistry of the feed solution was compatible with the process equipment. Samples of the condensed overheads and the concentrated bottoms from the first several batches processed were analyzed to ensure that the chemistry of those streams was compatible with down-stream process equipment. The results of these analyses have been included in this report to provide a resource for process permitting discussions and planning.

At the beginning of the offgas sample collection period, the vertical gas velocity profile and swirl angle in the duct were measured to determine an appropriate fixed-point location to collect the offgas samples. Sample contamination survey trains and routine

radiological surveys and screenings were completed throughout the sample collection period to ensure that the samples shipped to the contract analytical laboratory met the labs radioactive materials license criteria. At the end of the sample collection period, the sample probe was removed from the duct and rinsed with acetone and nitric acid. The acetone and nitric acid probe rinses were analyzed for PM and metals.

A set of two runs was completed for each EPA sample train configuration at the beginning and another at the end of evaporator batches. This provided a total of four runs for each method to compare emissions trends at the beginning and end of the evaporator batches. Oxygen concentrations were monitored during each sample train run. The oxygen concentrations in the duct were consistently found to be similar to ambient air conditions. Therefore, it was not necessary to constantly operate the oxygen monitor.

Moisture levels in the offgas were determined from gravimetric and/or volumetric changes in the sample train resins and impingers, respectively. The offgas moisture level was typically less than the dew point of the sample gas passing through the sample collection train condensers. At the most, only 1-2 mL net condensate was collected in any of the condensate knockout impingers.

Data Quality Assessment

All of the planned emissions inventory samples data and associated quality assurance/quality control (QA/QC) samples were collected in accordance with the test plan (PLN-879) and Quality Assurance Project Plan (PLN-880) which were developed and approved for this project. An extensive discussion is provided in the report body regarding conformance of the sample collection activities with the procedures and EPA Method requirements, performance of the QA/QC samples, sampling surrogates, and internal standards.

Although an independent review of the data by the INEEL Sample Management Office (SMO) was not completed, the analytical data reports and data reduction calculations were reviewed by the contract laboratory Quality Officer, the Project Technical Leads, and the BBWI Project Quality Assurance Officer. All of the analytical data and offgas emissions results are judged to be useful for their intended purpose of completing an emissions inventory for the NWCF ETS system. The results are applicable to, and bounded by, the 2:1 volumetric blend of Tank WM-184 and Tank WM-181 feed composition, and NWCF ETS process operating parameters and conditions corresponding to the offgas sampling period.

Emissions Results

The concentration levels of the 20 highest VOC compounds emitted from the evaporator are plotted in Figure S-1. In general, volatile organic emissions are slightly higher at the start of an evaporator batch. The two highest volatile organics emitted from

the NWCF ETS were dodecane and acetone, which on a volumetric basis are only 50 ppbv and 30 ppbv, respectively. Acetone was also detected in the feed to the NWCF Calciner. Dodecane was not a target analyte for the liquid feed and therefore was not measured.

Figure S-1. Comparison of volatile organic emissions at the beginning and end of evaporator batches.

The top 20 SVOCs measured in the offgas stream are plotted in Figure S-2. SVOC emissions also appear to be slightly higher at the start of the evaporator batch. Benzoic acid (a target analyte) and benzaldehyde (a tentatively identified compound) were the two most prevalent semi-volatile organics emitted during operation of the NWCF ETS. The maximum emissions concentrations for benzoic acid and benzaldehyde were 310 ppbv and 80 ppbv, respectively.

Nearly all of the compounds are derivatives of benzene or other cyclic compounds and are possibly the products of incomplete combustion of the kerosene used to heat the Calciner. With the exception of benzoic acid, all of the SVOC species emitted from the evaporator were also detected during the NWCF Calciner offgas emissions inventory (Boardman 2001). It is therefore postulated that these compounds entered the Tank Farm System when Calciner scrub was recycled to the tank farm. They could also be formed by oxidation of benzene and toluene in the acidic waste solutions.

On a volumetric basis, the sum of all volatile and semi-volatile organics is less than 1 ppm. The hourly total emissions rate for all volatile and semi-volatile organic emissions was less than 0.02 lbs/hr.

Figure S-2. Comparison of semi-volatile organic emissions at the beginning and end of evaporator batches.

The average metals emissions rates at the beginning and end of evaporator batches are plotted in Figure S-3. As anticipated, metals emissions, including mercury, were typically higher at the end of an evaporator batch when the evaporator solution reached its maximum density. The emissions of all metals species appear to correlate with the solution density.

Total particulate and chloride emissions rate averages at the start and end of two evaporator batches were very low. The sum of chloride emission contributions from HCl and Cl₂ was less than 1 ppmv. Particulate emissions were slightly higher at the beginning of the batch which followed the trend of the semi-volatile organic species emissions.

Figure S-3. Comparison of metals emissions at the beginning and end of evaporator batches (not including final probe rinse species apportionment).

Emissions Risk

The emission rate measurements were used to calculate the risk to human health. Pollutants from the NWCF ETS are released from the same point (*i.e.*, the INTEC main stack) and under the same conditions as NWCF Calciner emissions. Therefore, to a close approximation, the NWCF ETS hazards and risks can be scaled using the risk terms previously determined for the NWCF Calciner operations (Boardman 2001).

It was observed that the emissions rates, and hence component-specific risk contributions, were generally much lower from the NWCF ETS than from the NWCF Calciner. Most of the materials "found" were present at levels below the analytical laboratory reporting limits. The summed hazardous quotient (HQ) for all emissions from the NWCF ETS was 6.2e-6 as compared to the EPA target criteria of 0.25. The cancer risk was 1.3e-10 compared to an EPA target of 1e-5. The semi-volatiles were the largest contributor to the HQ and the Risk. The most significant species was a phthalate (bis(2 ethylhexyl)phthalate) which is a common contaminate from plastics present in laboratory and sampling areas.

In conclusion the measured emissions from the NWCF ETS are extremely low for all categories of pollutants. The estimated cancer risk and health hazard quotient are each several orders less than the limit normally allowed by EPA.

ACKNOWLEDGEMENTS

This report is the result of a concerted effort on the part of several Company support organizations. The authors wish to acknowledge C. N. Woodall, Sr. Technical Specialist, for set up of the sample collection equipment and support during sample collection and shipping, and for chemical and waste management. R.M. Gifford is recognized for administrative support, training coordination, records management, and preparation of this report. The project manager for both the offgas and liquid sampling activities was L. J. Young, who supported technical planning, equipment and sample collection area setup, work authorization prerequisites, and ultimately, the sample collection activities.

ABSTRAC	CT	iii
SUMMAR	Y	v
ACKNOW	LEDGEMENTS	xi
ACRONYI	MS	xvii
1. INTRO	DDUCTION	1
2. NWCF	ETS SYSTEM AND OFFGAS SAMPLING LOCATION	3
3. SCOPI	E AND APPROACH	11
4. RADIO	DLOGICAL SCREENING RESULTS	18
5. OFFG	AS SAMPLE ANALYTICAL RESULTS	21
5.1 Vo	olatile Organic Compounds	22
5.1.1	VOC Target Analyte List	22
5.1.2	VOC Analytical Results	24
5.1.3	VOC Data Quality Assessment	25
5.2 Ser	mi-volatile Organic Compounds	34
5.2.1	SVOC Target Analyte List	35
5.2.2	SVOC Analytical Results	37
5.2.3	SVOC Data Quality Assessment	37
5.3 Me	etals	43
5.3.1	Metals Target Analyte List	44
5.3.2	Metals Analytical Results	44
5.3.3	Metals Data Quality Assessment	45
5.4 Par	rticulate Matter and Acid Gases	47
5.4.1	Acid Gas Target analytes	47
5.4.2	Analysis of PM and Acid Gases	47
5 4 3	PM and Acid Gas Data Quality Assessment	48

5.	PRO	CESS STREAM CHARACTERIZATION RESULTS	50
7.	PRO	CESS OPERATING CONDITIONS	58
3.	DQO	ASSESSMENT AND PROJECT SURVEILLANCE	59
	8.1 E	Oocumented Field Changes	59
	8.1.1	VOC Sample Collection	59
	8.1.2	SVOC Sample Collection	60
	8.1.3	SCS Trains and Screening	60
	8.1.4	Metals and Anions Sample Collection	60
	8.1.5	Miscellaneous Decisions	60
	8.2 D	Oata Quality Indicators	61
	8.3 S	ampling Documentation Reviews	62
	8.4 R	Records Management	62
	8.5 R	Review of Spreadsheet Calculations	63
	8.6 A	analytical Results	64
	8.6.1	Data Reporting and Flagging	64
	8.6.2	2 Blank Corrections	65
	8.6.3	B Data Reporting	65
	8.6.4	4 Analytical QC	65
	8.7 R	Request for Analysis and Chain-of-Custody Forms	67
	8.8 F	ield Assessments by PQAO	68
9.	OFF	GAS EMISSIONS AND HEALTH RISK	70
	9.1 E	missions Rates and Trends	70
	9.1.1	Organic Compounds	71
	9.1.2	2 Inorganic Compounds	73
	0.2 5	missions Health Risk	76

10. C	CONCLUSIONS	81
11. R	REFERENCES	82
Appe	endix A. Analytical Data Summaries	
Appe	endix B. Offgas Sampling Data	
Appe	endix C. Process Stream Sampling Data	
Appe	endix D. DCS Data	
	FIGURES	
S-1. S-2. S-3. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Comparison of volatile organic emissions at the beginning and end of evaporator batches	ix inal x 5 6 7 72 73 inal 75 75
1.	Typical NWCF ETS operating conditions	4
2.	Summary of NWCF ETS offgas sample collection and analysis methods	. 12
3.	Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas	. 15
4.	Sample contamination survey train radio-assay results	. 19 22
5.	Volatile organic compound target analyte list	
6. 7.	Volatile Organic Compound (VOC) internal standard recoveries	. 30
7. 8.	Volatile Organic Compound (VOC) surrogate compound recoveries	. 32
9	SVOC target analyte list	. 35

10.	SVOC train sample internal standard compound recoveries	39
11.	SVOC surrogate compound recoveries	
12.	Metals target analyte list	
13.	Inorganic analyses of feed streams processed during NWCF ETS off-gas emissions sampling	
14.	Inorganic analyses of bottoms streams during NWCF ETS off-gas emissions sampling	
15.	Inorganic analyses of condensate streams during NWCF ETS off-gas emissions sampling	
16.	VOC analyses of NWCF ETS streams during NWCF ETS off-gas emissions sampling	
17.	SVOC analyses of NWCF ETS streams during NWCF ETS off-gas emissions sampling	
18.	Risk scaling of Method 0010 analytes	
19.	Risk scaling for Method 0031 analytes	
20.	Risk scaling for Method 0050 analytes	
21.	Risk scaling for Method 0060 analytes	

ACRONYMS

ACS American Chemical Society

ALD Analytical Laboratory Department

APS atmospheric protection system

CAS Chemical Abstract Service

CEMS continuous emissions monitoring system

CFL central file location

CFR Code of Federal Regulations

COC chain of custody

CVAAS cold vapor atomic absorption spectroscopy

DF decontamination factor

D/F dioxins and furans

DCS Distributive control system

D.I. deionized

DOT Department of Transportation

DQOs data quality objectives

DWSD Drinking Water Standards Division

EDD electronic data deliverables

EMSL Environmental Monitoring Systems Laboratory

EPA U. S. Environmental Protection Agency

GC/MS gas chromatography/mass spectrometry

HCl hydrochloric acid

HEPA high-efficiency particulate air (filter)

HQ hazardous quotient

HRGC/HRMS high resolution gas chromatography/high resolution mass spectrometry

INEEL Idaho National Engineering and Environmental Laboratory

INTEC Idaho Nuclear Technology and Engineering Center

IS internal standard

L&V limitations and validation

LCS laboratory control samples

LCSD laboratory control samples duplicate

LET&D Liquid Effluent Treatment and Disposal

MCP Management Control Procedure (Company Document Indicator)

MDL method detection limit

MS/MDS matrix spike/matrix spike duplicate

NWCF New Waste Calcining Facility

PAH polycyclic aromatic hydrocarbons

PARCC precision, accuracy, representativeness, completeness, and comparability

PCBs polychlorinated biphenyls

PDS post digestion spikes

PEWE Process Equipment Waste Evaporator

PLN Plan (Company Document Designator)

PM particulate matter

PQAO Project Quality Assurance Officer

PTL Project Technical Lead(s)

QA/QC quality assurance/quality control

OAPiP quality assurance project plan

RAL Remote Analytical Laboratory

RCRA Resource Conservation and Recovery Act

RDL reliable detection limit

RFA/COC request-for-analysis/chain-of-custody

RL reporting limit (analytical laboratory established)

RPD relative percent difference

RPF relative potency factor

SAIC Science Applications International Corporation

SDG sample delivery group

SMO Sample Management Office

SMVOC sampling method for volatile organic compounds

SOW statement of work

STL Severn-Trent Laboratory- (Knoxville, Tennessee)

SVOC semi-volatile organic compound

SW Solid Waste

TAL target analyte list

TFF Tank Farm Facility

TICs tentatively identified compounds

TOC total organic carbon

TOS task order specific (statement of work)

TPR Technical Requirements Procedure (Company Document Designator)

VOC volatile organic compound

XX

NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

1. INTRODUCTION

Liquid wastes generated by fuel reprocessing and decontamination activities are stored in the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. The Tank Farm wastes are currently being concentrated using the INTEC New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS) (formally know as High Level Liquid Waste Evaporator HLLWE). The NWCF ETS currently operates under Resource Conservation and Recovery Act (RCRA) interim status. A RCRA Part B permit application for this unit is being prepared and is planned to be submitted in FY-2003. In order to support the permitting activities, the feed and output streams were characterized during evaporator operations in May and June, 2001. Characterization of the NWCF ETS process gaseous emissions were completed in conjunction with liquid feed and concentrated effluent analyses.

A detailed test plan (Test Plan for the HLLWE Effluent Gas Emissions Inventory, PLN-879) and quality assurance project plan (QAPjP- INTEC Quality Assurance Project Plan for the HLLWE Offgas Emissions Inventory Project, PLN-880) were developed for this project. The test plan discusses project organization, training requirements, safety implementation plans, sample collection objectives, and potential NWCF ETS offgas emissions. The QAPjP specifies the quality assurance and quality control (QA/QC) requirements, applicable quality standards, and both Idaho National Engineering and Environmental Laboratory (INEEL) and project-specific procedures for collecting, packaging, preserving, shipping, and analyzing the NWCF ETS offgas samples. The sample collection and analysis methods and procedures adhere to U.S. Environmental Protection Agency (EPA) protocol and technical requirements.

Science Applications International Corporation, Idaho Falls, Idaho (herein referred to as SAIC) was subcontracted to collect and recover the samples using the EPA prescribed procedures and equipment. SAIC also assisted BBWI in calculation of the air emissions rates using the data collected in the field and the sample analytical results. SAIC is recognized for its training and experience as a sample collection team. They previously supported the NWCF Calciner offgas emissions inventory project. Sample collection was performed using checklists and field data sheets.

Severn-Trent Laboratories, Knoxville, Tennessee (herein referred to as STL) performed the offgas sample preparations and analyses. The samples sent to STL were accompanied by a Request-for-Analysis Form (RFA), which documents the project-specific analytical specifications and quality control instructions to the laboratory. As part of the RFA documentation, a Chain-of-Custody (COC) and tractability record was maintained for all sample transfers to the laboratory. An analytical report for the final analytical data (STL 2001) was provided by STL. The analytical report includes a description of the analytical procedures that were used to acquire the data generated in support of this project.

Liquid feed streams and effluents associated with the NWCF ETS were collected in conjunction with the offgas sampling and were analyzed to complete mass balance and emissions inventory calculations. The samples were collected and analyzed under the Balance of Plant Sampling and Analysis Plan (inputs to Process Equipment Waste Evaporator (PEWE) and Liquid Effluent Treatment and Disposal (LET&D)). The liquid stream samples were collected and analyzed remotely to reduce operator and analyst exposure to radiation. Liquid sample collection was performed by the NWCF ETS operators

using double-needle sample collection system. The samples were sent the INTEC Remote Analytical Laboratory (RAL) for analyses.

The purpose of this report is to document and discuss the NWCF ETS offgas emissions inventory results and liquid feed stream analytical results. A technical description of the facility is followed by a description of the sample collection matrix and results. The risk associated with the offgas emissions has also been calculated and is presented herein.

2. NWCF ETS SYSTEM AND OFFGAS SAMPLING LOCATION

The NWCF ETS is a single-stage, thermal siphon, batch evaporator. Dilute Tank Farm liquid wastes are semi-continuously fed to the evaporator to maintain a constant level in the evaporator. A schematic of the NWCF ETS process is shown in Figure 1. The system consists of a feed tank (VES-NCC-152), a flash column (VES-NCC-150), a reboiler (HE-NCC-350), and a condenser (VES-NCC-151). Blended tank farm wastes are added to the flash column via the feed tank. When the level in the flash column reaches its normal operating level, steam is introduced into the shell side of the evaporator reboiler. As the evaporator solution temperature increases, its density decreases and the solution starts to rise. Steam bubbles form and further decrease the solution density. This draws the liquid from the bottom of the flash column into the tubes of the reboiler and creates a thermosiphon. The steam from the reboiler rises through a demister mesh and proceeds to the condenser. Typical NWCF ETS process operating conditions during sampling collection and analysis is shown in Table 1.

Once the desired specific gravity is reached, the concentrated solution is cooled and returned to the Tank Farm. The NWCF ETS overhead vapor is condensed in a total condenser and sent to the INTEC Process Equipment Waste Evaporator (PEWE) to be re-evaporated. Non condensable and purge gasses are vented from the feed tank and the condenser to the NWCF equipment vent system as shown in Figure 2. The equipment vent gasses join with the main process off-gas steam from the NWCF prior to the system high-efficiency particulate air (HEPA) filters.

Each batch generally requires 10-16 hours to process, followed by 10-16 hours to refill the feed tanks and to attend to waste transfers back to the Tanks Farm. Operating conditions that were monitored during emissions inventory testing are shown in discussed in Section 7. Normal operating conditions were maintained to provide the most stable and representative conditions throughout the sample collection period. All operating conditions are routinely recorded by the NWCF and Atmospheric Protection System (APS) control systems. These records are maintained by INTEC High Level Waste operations.

The offgas tie-in sample location used previously to sample the NWCF Calciner offgas stream was determined to be the best location for sample collection and offgas measurements for the scope and objectives of this project. The existing offgas tie-in location is downstream of the NWCF compressors and upstream of the APS. At this location, the offgas pipe is underground. The estimated offgas conditions at this location are listed in Table 1. Figure 3 shows the 12-inch ID pipe placement 9 ft underground, contained inside a larger 20 inch pipe encasement, which is inside a concrete encasement. The encasements provide the necessary physical protection and radiation shielding as the offgas flows to the APS.

Figure 4 shows a side view of the offgas tie-in location. This location is over 10 ft (10 pipe diameters) or more upstream and downstream of flow interference, so the flow should be reasonably straight (except for any disruption caused by the 12-inch tee). A 12-inch ID tee topped with a flange provides access through a manhole to the offgas pipe. Several penetrations (shown in top view in Figure 5) through the flange enable sample probe access and sample extraction.

The two-inch diameter port (line 2" POG-AR-156513) was used exclusively for the NWCF ETS offgas sample collection. This port is located at the centerline of the offgas duct cross section, allowing a vertical traverse of the duct to be made. A custom heated Method 5 probe (1.75 inch outside diameter) for was fabricated for sampling at this location. The sample probe was equipped with a compression fitting to provide a seal on the outer sheath of the sample probe. Pressurized air is used to continuously purge the annulus between the port inner wall and the probe sheath.

Table 1. Typical NWCF ETS operating conditions.

Table 1. Typical NWCF ETS operating of		
Parameter	DCS Identification Number	Value (a)
	HEPA filters	
Evaporator temperature	T150-1 through T150-10	95-110°C
Steam to evaporator	F350-1C	1500-2000 lbs/hr
Evaporator level	L150-1C	100-140 inches
Evaporator density		1.0-1.35 g/mL
Superheater (HE-NCC-335) outlet	T335-2C	150-205 °F
offgas temperature (HEPA filter bank		
inlet temperature)		
HEPA filter inlet pressure	P130-2C	30 to 100 in. H ₂ O
HEPA filter stage 1 differential pressure	PD130-1-1C, -2-1C, -3-1C,	$0.5-10$ in. H_2O (when online)
	-4-1C	0-0.5 in. H ₂ O (when offline)
Total differential pressure across HEPA	PD130-1C	2-18 in. H ₂ O
filter stages 1-3		
HEPA filter stage 3 outlet temperature	T130-1-1C, -2-1C, -3-1C,	80-150 °F
-	-4-1C	
NWCF process offgas flowrate (HEPA	F130-1C	50 - 1,000 scfm
filter outlet offgas flowrate)		
Eq	uipment Vent Conditions	
Offgas flow	F136-1C	500-1200 scfm
Offgas temperature	T336-1C	60°- 80° F
Offgas to APS pressure	P122-1	6-12 in. H ₂ O vacuum
Atmospheric Protection System (APS) an	d Other Equipment Downstream	of the Offgas Tie-in Sample
Location		
APS inlet offgas temperature (process	T-OGF-104	180-200°F
offgas condenser outlet gas temperature		
APS inlet flowrate (process offgas flow)	F-OGF-2	1000-2000 scfm
APS inlet offgas pressure	P-OGF-22	Negative 5-15 in. H ₂ O (c)
Main stack offgas flowrate	F-OGF-4/5	80,000-100,000 scfm
Main stack offgas temperature	T-OGF-4-1, -5-1	70-100 °F
a) If the value for an operating parameter dr		nge, or outside +/- 10% of the
range is shown then the test team leader		

a) If the value for an operating parameter drifts outside of he indicated value range, or outside +/- 10% of the range is shown, then the test team leader must determine if sample collection should discontinue until NWCF operation is modified to correct the value.

b) Standard temperature and pressure is 60°F, 1 atmosphere.

c) This pressure is controlled using dampers on offgas blowers BLO-OGS-213 and -214, and can be adjusted to control the static pressure at the Offgas Tie-in location

Figure 1. NWCF ETS system.

Figure 2. NWCF equipment vent.

Figure 3. Offgas pipe axial view of the offgas tie-in sample location.

File: 3612-6.5Mg User: KBR
Path: P.Vick Date: 01/07/99 - 0\$:27 A.M.

Figure 4. Side view of offgas tie-in sample location.

This sample collection location does not meet all specified EPA requirements for offgas sample collection (40 Code of Federal Regulations (CFR) 60 Appendix A, Methods 1 and 2) since it is not possible to traverse the duct at two orthogonal positions. There may also be some mutual disturbance of the offgas flow pattern caused by the 3/8-inch tubes that are slightly upstream of the 2-inch access port as shown in a top view of the sample tie in (Figure 5). Fortunately, interference between sample ports is minimized as there is a clear path to oncoming gas flow as shown in the cross sectional view.

Another possible limitation to the sampling location is the presence of radionuclide contamination in the NWCF offgas duct. The procedure for inserting the 12 ft probe into the duct required donning of anti-contamination clothing and active monitoring by a Radiological Control Technician and Industrial Hygienist. The fragile probe tip can be easily damaged, and possibly could fall into the NWCF offgas duct- an event that is undesirable because it would introduction foreign material into the duct upstream of the Atmospheric Protect System. In addition, any potential presence of loose contamination in the duct could result in the spread of radiological contamination and possible exposure to the sample collection attendants. Hence, it was determined that the probe would be placed in the duct at a fixed point and not disturbed until the NWCF ETS offgas measurements were concluded. The probe was only articulated at the beginning of the sample collection tests in order to measure the vertical velocity profile in the duct.

TOP VIEW OF SAMPLING TEE AT NWCF OFF-GAS TIE IN LOCATION

File: 3612-5.dwg User: KBR
Path: P\lnox Date: 01/07/99 - 09:26 A.M.

Figure 5. Top view of offgas tie-in sample location.

3. SCOPE AND APPROACH

The purpose of this activity is to characterize the NWCF ETS process effluent gas emissions. The Tank Farm wastes are highly acidic (mainly nitric acid) inorganic salt solutions and contain several RCRA metals, including mercury, and trace amounts of volatile and semi-volatile hazardous organic compounds. Those components with low boiling points are released to the NWCF ETS offgas system during waste transfers, mixing, and evaporation. Trace amounts of heavy, nonvolatile hydrocarbons may also exist in the waste feed solutions; however, emissions of the nonvolatile hydrocarbons and also the nonvolatile metals is theorized to mainly occur by aerosol entrainment from the evaporator. The majority of the entrained droplets are believed to be collected in the offgas condensers, mist eliminators, and HEPA filters.

The scope of the NWCF ETS process effluent gas emissions inventory includes:

- Measurement of the NWCF offgas duct velocity, temperature, and flowrate during operation of the NWCF ETS
- Manual offgas sampling and analysis for particulate matter (PM), hydrochloric acid (HCl), Cl₂, selected metals including Hg, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs)
- Measurement of radiological contaminate concentrations in sampling media using sample collection trains that are representative of the EPA sample collection trains
- Measurement of oxygen concentrations
- Measurement of probe rinseate for apportionment of metals and PM adsorbed on the probe to the respective train totals

Standard EPA sample collection and analysis methods were used to characterize the measure target analytes for each of the categories listed in Table 2. Measurements of moisture content and offgas temperature, velocity, and flowrate are included in each of the isokinetic sample train measurements. Sampling was conducted following EPA methodology with attention being given to the following:

- Development and adherence to a project quality assurance/quality control plan
- Implementation of sample chain-of-custody/requests-for-analysis, master sample lists, and sample labeling and tracking which assured in-field verifications of correctness of sample identifiers
- Development of target analyte lists (TAL) and precision, accuracy, representativeness, completeness, and comparability (PARCC) data quality indicators and objectives
- Collection of samples using checklists to record train set up, sample collection data, and sample recovery steps
- Collection and analysis of reagent blanks, trip blanks, and field blanks to assess prescribed data quality objectives
- Sample collection and documentation by a Project Quality Assurance Officer (PQAO)

- Application of EPA Solid Waste (SW)-846 and 40CFR 60 Appendix A reference methods for sample analysis
- Multiple reviews and verifications of field data, analytical data, process data, and resulting calculations of emissions rates

Table 2. Summary of NWCF ETS offgas sample collection and analysis methods.

Sample train procedure or Method	Measurement	Train description	Analytical procedures
2	Gas velocity, temp., swirl angle	S-type pitot, incline manometer, thermocouple	
0010	SVOCs	Isokinetic single-point, glass-lined probe, heated filter, XAD-2® sorbent, impingers	3542/8270C GC/MS (SVOCs) STL SOP KNOX-ID-0012
0060	Multiple metals including Hg	Isokinetic single-point, glass-lined probe, heated filter, impingers that contain sorbent solutions	6010A (ICAP) for multiple metals, 7470 (CVAAS) for mercury
0050 modified for PM	HCl, Cl ₂ , PM		9056 / 9057 (IC for HCl, Cl ₂ , and F); and Method 5 (gravimetric for PM), STL SOP KNOX-MS-0011
0031 SMVOC	VOCs	Single point, non-isokinetic, three sorbent tubes in series – (Tenax®/Tenax® /Anasorb® 747) and condensate trap	5041A/8260 GC/MS
3A or other (as requested by project lead)	O_2	Single point, nonisokinetic, heated sample line	Paramagnetism

The level of organics in the acidic Tank Farm waste solutions is very low and the NWCT ETS is operated at a much lower temperature than the NWCF Calciner. Therefore, because temperature and chemical precursors are not there in the system, it was determined that separate analysis of PCBs, and D/Fs was not necessary. It was determined that the results of the SVOCs for the target PAH compounds would be sufficient for risk assessment calculations. The offgas results presented in this report demonstrate that SVOC emissions are indeed negligible, as are precursors to PAHs and also higher

molecular weight compounds, including PAHs, PCBs, and D/Fs. Hence, the scope of the NWCF ETS offgas emissions inventory was limited to those methods shown in Table 2.

During the recent NWCF Calciner offgas emissions inventory (Boardman 2001), sample collection runs were conducted for analysis of 24 of the highly toxic semi-volatile polynuclear aromatic hydrocarbons (PAH), polychlorinated biphenyl compounds (PCB) and dioxins and furans (D/Fs), as well as SVOCs. This required separate runs with EPA Method 0010 and EPA Method 0023A trains. The samples are extracted and concentrated for subsequent analysis by high resolution gas chromatography/high resolution mass spectroscopy (HRGC/HRMS). Isotope dilution is used for each target analyte; thus, it was possible to achieve method detection limit concentrations for those analytes that were typically one-three orders of magnitude less than MDLS for the current reported project, where standard EPA Method 8270C gas chromatography/mass spectrometry (GC/MS) was specified. Lower detection limits for these compounds were desired to assist in the analysis of the Calciner performance, and also to provide the best possible data for Calciner emissions health risk assessment.

At the beginning of the sample collection period, the vertical gas velocity profile and swirl angle in the duct was measured to determine an appropriate fixed-point location to collect the offgas samples. Fixed-point sampling was necessary to avoid potential spread of contamination and possible damage to the glass probe tip. Two separate traverses were made to enhance accuracy of the velocity measurements. The minimum number of traverse points per Method 1 on the single (vertical) traverse for particulate and nonparticulate traverses (4) plus the pipe centerline were included in the traverses. The swirl angle at each traverse point and the average swirl angle per EPA Method 1, Section 2.4 were also determined. Subsequently, the probe was fixed at the point of maximum flow which corresponds EPA prescribed sample position at four inches from the pipe wall.

A set of two samples trains (referred to herein as "runs") were collected for each category of pollutants at the beginning and also at the end of evaporator runs. This provided a total of four runs for each method and brackets the emissions over the entire batch. One blank train (field blank) was also collected during the period that the four trains for each method were being run. Trip blanks and reagent blanks also were collected, as required by the QAPjP.

Oxygen concentrations were periodically recorded from the digital readout of the oxygen monitor located in the sampling tent during the manual sample collection operations. Because the off-gas sampled was essentially air supplied to ventilate NWCF vessels it was supposed and confirmed that the oxygen concentrations in the duct were similar to ambient air conditions. Therefore, it was determined that there was no need to constantly operate the oxygen monitor.

Moisture levels in the offgas were determined from the gravimetric and volumetric changes in the sample train resins and impingers, respectively. The moisture level was typically less than the dew point of the sample gas passing through the sample collection train condensers. At the most, only 1-2 mL of condensate was collected in any of the condensate knockout impingers. This is consistant with the use of a total condenser on the process and the addition of dry instrument air.

Finally, sample contamination survey trains were collected at the beginning of the tests in accordance with an INTEC management control procedure (MCP-1173, Package and Ship NWCF Offgas Emissions Samples Offsite for Analysis, Revision 2). Radioanlytical results from these trains were used to bracket the expected radioactivity range in the offgas samples to ensure that sample shipments to STL were in accordance with their radioactive materials license. Additional screening was performed routinely throughout the sample collection period. Every sample, as a minimum, was screened for gamma/beta emissions using a micro-R radiation detector, which is approximately 10 times more sensitive than the hand-held friskers used in the field by the Radiological Control Technicians. All of the

Method 5 filters were also submitted to the INTEC Radiochemical Laboratory for an extended duration (typically 12 hours) gamma count.

At the end of the sample collection period, the sample probe was removed from the duct and rinsed with acetone and nitric acid. These samples were surveyed for radiological contamination before being shipped to the analytical laboratory for measurement of PM and metals that were adsorbed on the probe. The results of these samples were used to address the technical acceptability of leaving the probe at a fixed position. It was assumed that the level of particulate in the duct would be negligible as a result of the sample location being downsteam of the NWCF HEPA filter banks. This was shown to be an appropriate assumption for the NWCF Calciner offgas emissions inventory project (Boardman 2001) and for the NWCF ETS as discussed later in this report. When a measurement of any target analyte in the probe rinsate was greater than the method detection limits, the result was apportioned to the metals and PM trains results.

Table 3 summarizes the sample collection trains, blank trains (field blanks), trip and reagent blanks, probe rinses, and radiological survey trains. Also listed is the sample collection date, time, and volume of offgas that was pulled through the train.

Table 3. Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas.

Reboiler Steam Off Time	1937	1747	1933	1715	Y Y	Ϋ́	1933	1715	X	1800
Reboiler Steam On Time	1026	0830	0951	813	NA	NA	0951	0813	NA	0800
NWCF ETS Batch Num.	309	310	316	317	Ϋ́Z	ΝΑ	316	317	V V	318
Run End Time	1610	1240	1230	1133	N A	N A	1930	1802	NA	1100
Run Start Time	1030	0830	0930	0751	NA	NA	1600	1500	NA	0800
Date Collected	05/30/01	05/31/01	06/05/01	06/06/01	06/06/01	06/06/01	06/05/01	10/90/90	06/06/01	06/07/01
Target Analytes	Tritium, alpha/beta/gamma emitters	Tritium, alpha/beta/gamma emitters	Metals, including Hg	Metals, including Hg	Metals, including Hg	Metals, including Hg	Metals, including Hg	Metals, including Hg	Metals, including Hg	PM, HCl, Cl ₂ , HF, nitrate, nitrite
STL Sample No.'s Associated with this train	3269, 3270, 3271, 3272	3273, 3274, 3276, 3278	3279, 3280, 3281, 3282, 3283, 3284	3291, 3292, 3293, 3294, 3295, 3296,	3297, 3298, 3299, 3300, 3301, 3348	3302, 3303, 3304, 3305, 3306, 3307	3326, 2227, 3328, 3329, 3330, 3331	3332, 3333, 3334, 3335, 3336, 3337	334	3308, 3309, 3310, 3311
Train ID or QC Sample No.	SCS-EVAP-1	SCS-EVAP-2	0060-STRT-1	0060-STRT-2	0060ª Reagent Blanks	0060-BT-1 ^b Blank Train	0060-END-1	0060-END-2	Nitric Probe Rinse	0050-STRT-1

Table 3. Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas.

Train ID or QC Sample No.	STL Sample No.'s Associated with this train	Target Analytes	Date Collected	Run Start Time	Run End Time	NWCF ETS Batch Num.	Reboiler Steam On Time	Reboiler Steam Off Time
0050-STRT-2	3312, 3313, 3314, 3315	PM, HCl, Cl ₂ , HF, nitrate, nitrite	06/11/01	0750	1130	322	0821	1828
0050ª Reagent Blanks	3316, 3317, 3318, 3319, 3349	PM, HCl, Cl ₂ , HF, nitrate, nitrite	10/20/90	NA	N A	NA	N A	N A
0050-BT-1 ^b	3322, 3323, 3324, 3325	PM, HCl, Cl ₂ , HF, nitrate, nitrite	06/11/01	NA A	N A	NA	NA	Y X
0050-END-1	3338, 3339, 3340, 3341	PM, HCI, Cl ₂ , HF, nitrate, nitrite	06/07/01	1405	1720	318	0800	1800
0050-END-2	3342, 3343, 3344, 3345	PM, HCl, Cl ₂ , HF, nitrate, nitrite	10/11/90	1430	1730	322	0821	1828
Acetone probe rinse	3346	PM	06/11/01	NA	N A	NA	A A	N A
0010-STRT-1	3353, 3354, 3355, 3356, 3357, 3358	Semi-volatile organic compounds	06/18/01	0830	1130	329	0857	1819
0010-STRT-2	3372, 3373, 3374, 3375, 3376, 3377	Semi-volatile organic compounds	06/19/01	0830	1100	330	0824	1748
0010ª Reagent Blank	3378, 3343, 3444, 3445	Semi-volatile organic compounds	10/81/90	V V	N A	Y Y	NA	NA
0010-BT-1 ^b	3397, 3398, 3399, 3400, 3401, 3402	Semi-volatile organic compounds	06/18/01	NA	NA A	NA	NA A	NA

Table 3. Summary of samples collected in support of the INEEL NWCF ETS Effluent Gas.

Train ID or	Their ID or CTI Commit No. 2 Accordad	Toward American	550	Dun Cton	Dun End	NIMCE ETC	Doboilor	Doboilor
QC Sample No.	of the Sample 100. S Associated with this train	Talget Alialytes	Collected	Time	Time	Batch Num.	Steam On Time	Steam Off Time
0010-END-1	3403, 3404, 3405, 3406, 3407, 3408	Semi-volatile organic compounds	06/18/01	1500	1800	329	0857	1819
0010-END-2	3422, 3423, 3424, 3425, 3426, 3427	Semi-volatile organic compounds	6/19/01	1400	1715	330	0824	1748
0031-STRT-1	3359, 3360, 3361, 3362, 3363, 3364, 3365, 3366, 3367, 3368, 3369, 3370, 3371	Volatile organic compounds	06/20/01	0810	1048	331	0831	1748
0031-STRT-2	3379, 3380, 3381, 3382, 3383, 3384, 3385, 3386, 3387, 3388, 3389, 3390, 3391	Volatile organic compounds	06/21/01	0815	1152	332	0838	1749
0031 Field and Trip Blanks ^{a,b}	3392, 3393, 3394, 3395, 3396, 3441, 3442,	Volatile organic compounds	06/20/01	۷ ۲	V Z	NA	Y Y	VA
0031-END-1	3409, 3410, 3411, 3412, 3413, 3414, 3415, 3416, 3417, 3418, 3419, 3420, 3421	Volatile organic compounds	06/20/01	1400	1715	331	0831	1748
0031-END-2	3428, 3429, 3430, 3431, 3432, 3433, 3434, 3435, 3436, 3437, 3438, 3439, 3440	Volatile organic compounds	06/21/01	1350	1710	332	0838	1749

a) Reagent blanks and trip blanks were obtained as identified in the master sample collection list.

Field QC samples are not exposed to the actual process offgas and thus are not correlated to ETS batches or run times. Probe rinses are not collected during active flow in the sampling slipstream, therefore, these are also not correlated to ETS batches or run times (q

4. RADIOLOGICAL SCREENING RESULTS

Two radiological contamination survey trains were collected at the beginning of the NWCF ETS offgas emissions inventory to establish the level of radiological contamination that could be uptaken by the EPA sample collection trains. The first train, identified as SCS-EVAP-1, was a hybrid of the Method 0060 for metals and Method 0050 for anions. The configuration of this train included a particle filter, followed by a condenser and condensate collection impinger, and then a pair of nitric acid/hydrogen peroxide impingers from the Method 0060 and a pair of sodium hydroxide impingers from the Method 0050 train. The acid and hydroxide impingers were used to capture the particulate and volatile radionuclides that are not disengaged by the filter and condensate trap. A gas volume of 3 dscm (dry, standard cubic meters) of gas was collected to match the volume of gas that was collected by the Method 0060 and 0050 sampling runs. Less than 2 mL of condensate was collected by this train- an insufficient amount for accurate analysis. Therefore, the condensate was added to the nitric/peroxide impinger solution.

The second radiological contamination train, identified as SCS-EVAP-2, was simply a standard Method 0010 train for semi-volatile organic collection, consisting of a particle filter, condenser, XAD-2® resin tube, a condensate trap and two organic-free water impingers. This train was mainly used to establish the level of contamination that could be potentially captured by the XAD-2® resin tube. The sample line, train glassware and filter housing were rinsed with acetone and methylene chloride. These rinses were composited into single sample for radiochemical analysis. The volume of gas collected was 3 dscm. The amount of condensate collected by the train was also very low (approximately 2 mL) for this train, indicating the offgas was essentially dry. The small amount of condensate was added to the organic-free impingers. Following the 12-hr gamma scan of the XAD-2® resin, the upper section of the resin bed, which first contract the sample gas and condensate, was extracted and prepped for gross alpha/gross beta counting.

Method 0031 for VOCs collection requires only 20 dsL (dry, standard liters) total, and only 5 dsL for each set of tubes. Therefore, the contamination levels established by the reference survey trains, at a total volume of 3000 dsL, clearly bounded the potential contamination picked up on the Tenax resin tubes used in the Sampling Method for Volatile Organic Compounds (SMVOC) runs.

Analysis of the contamination survey train samples was completed by the INTEC Radiochemical Laboratory. Appropriate standards were prepared and used to provide quantitative results for the various sample collection media. Each sample was first analyzed by a non-intrusive gamma scan to measure gamma-emitting nuclides such as Ba¹³⁷ (which is the short lived daughter product of Cs¹³⁷). Since Cs¹³⁷ is the most abundant non-volatile radionuclide in the waste, it is a convenient marker for the non-volatile radionuclides that could be present in the offgas samples, including Sr⁹⁰ and actinide isotopes. Therefore, an accurate gamma scan provides a basis for identifying the potential presence of Ba¹³⁷, and hence Cs¹³⁷, Sr⁹⁰, and other fission products and actinides that may be present in the samples. A 12-hr gamma scan was performed to provide the most accurate analysis possible.

Following the gamma scan, the samples were prepared for gross alpha/gross beta counting. This required that the solid sample media be digested and then dried to obtain a valid measure of the particle emissions. The activity of tritium was determined by beta scintillation of an aliquot of the up-front liquid impinger contents to which the small amount of condensate was added. These fraction also absorb the largest percentage of the non-condensable water vapor.

Table 4 summarizes the radio-assay results for SCS-EVAP-1 and SCS-EVAP-1. Only an ultra low level of gross beta and gross alpha emissions was detected in the samples. The sample contamination

levels are conservatively less than the analytical laboratory sample screening acceptance criteria for Category I samples.

Table 4. Sample contamination survey train radio-assay results.

Train ID	Sample ID	nination survey train Sample Media	Gamma	Gross Beta	Gross Alpha	Tritium
	3269	Particle filter	No nuclides identified	5.7E+00 ± 1.4E+00	9.8E-01 ± 6.7E-01	NA (dry sample)
SCS-EVAP-1	3270/3271 composite	Condensate and nitric/peroxide impinger contents	No nuclides identified	pCi 4.0E-02 ± 2.1E-02	pCi Not detected	0.17 μCi/sample
				pCi/mL		
	3272	Hydrogen peroxide impinger contents	No nuclides identified	4.3E+00 ± 2.1E-01	3.4E-02 ± 4.0E-02	NA (negligible condensate in sample)
				pCi/mL	pCi/mL	,
	3273	Particle filter	No nuclides identified	1.85E+01	6.0E+00	NA
			-	± 4.0E+00 pCi	± 2.6E+00 pCi	(dry sample)
	3276	XAD-2 [®] resin tube	No nuclides identified	5.84E00 ± 7.2E-01 pCi/g	Not detected	NA (negligible condensate in sample)
SCS-EVAP-2	3278	Condensate and organic-free water impinger composite	No nuclides identified	1.6E-02 ± 1.9E-02 pCi/mL	Not detected	0.32 μCi/sample
	3274	Organic solvent rinse composite	No nuclides identified	Not detected	Not detected	NA (negligible condensate in sample)

In order to ensure that the extremely low contamination levels in the offgas stream remained constant throughout the sample collection inventory, the particle filter for each Method 0060, Method 0050, and Method 0010 run, and one of the leading Tenax® tubes was submitted for a 12-hour gamma scan. This had little or no effect on sample preservation condition of the filters. Although the Tenax® was not maintained at the required temperature of 4°C, it is not likely that the VOC analysis results were

adversely affected since the tube was kept sealed during the gamma scan. The results of the on-going screening were consistent with the baseline results. No nuclides were identified by these extended gamma-scan analyses.

Each sample was also "smear-wiped" and counted to verify there was no detectable fugitive contamination on the surface of the sample containers. These additional screening efforts corroborated the results of the sample contamination survey trains and verified that each train did not collect any significant contamination throughout the 3-week sample collection period.

Finally, the volume of offgas sampled, as well as the amount of condensate collected by all of the sample runs, was checked and compared to the sample contamination survey trains. This ensured that the level of condensate, and hence the estimated amount of tritium in the respective samples, was consistent with the baseline results.

5. OFFGAS SAMPLE ANALYTICAL RESULTS

SAIC was responsible for setting-up, operating, and recovering the sample collection trains in the contamination containment hood. Once the samples were obtained, custody was transferred to the BBWI project principals for radiological screening and shipment to STL. The inorganic samples produced by each run were shipped to STL in Department of Transportation (DOT) approved fiber boxes with metal inner canisters. The organic samples were placed on ice and packaged in expanded, insulated coolers in order to maintain temperature preservation requirements. Chain-of-Custody and Requests-for-Analysis forms were used to track each sample. Shipments requiring preservative cooling were made using overnight delivery in order to ensure temperature preservation and analysis time limits were met. All of the samples meet the preservation and sample analysis time requirements without exception.

The results presented in this section are extracted from the Final Analytical Report provided by STL (STL 2001). Excerpts of the text and tables are included in this report to provide a single project summary document. Appendix A is a listing of the analytical lab certificates of analysis. These data were used to calculate the offgas emissions rates presented in Section 9.

STL tabulated train totals for each of the four EPA train runs that were made to characterize the NWCF ETS effluent gas emissions that are discharged through the NWCF offgas system. The results for each train component were summed to provide a run total for each target analyte. Although the laboratory data were reported down to the method detection limit (MDL), the project has implemented the reliable detection level (RDL) as the minimum value for risk calculations. The "RDL" is the detection level recommended by EPA. It is defined as 2.623 times the MDL (2.623 X MDL).

Significant figures for both the constituent fractions and the cumulative total were determined according to ASTM Standard E29-93a (1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications". Laboratory-assigned data qualifiers are displayed with each target analyte when required. The majority of these method-based flags are standardly defined flags among environmental laboratories. The data flags attached to the train totals represent the cumulative set of flags assigned to the result for each component that is included as part of the respective train totals. Data flags for individual component sample fractions were only carried through to the train totals when that particular train component result had an observable mathematical impact (based on significant figures as cited above) on the value of the "train totals" result for that compound.

When assigned, the "less than" (<) sign indicates that at least one sample fraction result included in the run total is either a "non-detect" value that has been evaluated down to the MDL of the measurement, or an estimated "hit" value that is below the RDL. In either case, the final analyte value for any fraction that has a laboratory result below the RDL is raised to the default RDL value, and the actual value for the respective analyte is judged to be less than conservative reported value. This same logic carries through to the summation of train fractions to arrive at train totals.

Additional project-specific train total flags are applied to the run total values that are not standard EPA data flags. These project-specific flags are specific to the NWCF ETS Offgas Emissions Inventory project and are defined as follows:

- An "N" flag indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
- A "P" flag indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.

• An "A" flag indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

5.1 Volatile Organic Compounds

The standard U.S. EPA Method 0031 SMVOC sampling train configuration was used to collect samples of the NWCF ETS offgas for the assessment of volatile compounds. Each run used four sets of volatile organic adsorption resins tubes. Each set of tubes was comprised of two Tenax® tubes and one Anasorb 747® tube in series. The resin tubes were followed by a condensate trap that was used to capture the condensate captured by all four set of tube for a given run. The volume of offgas collected across each set of tubes was 5 L over a time period of approximately 30-40 minutes. Hence the total volume of gas for each run was approximately 20 L, collected over a time span of around 2.5 hours. The purpose of multiple tube sets was to integrate the sampling event over a period of time to better obtain representative data that characterizes the offgas emissions of the offgas stream sampled and is recommended by Method 0031. Each run produced 12 resin tubes and one condensate fraction that were stored on ice after they were removed from the train.

5.1.1 VOC Target Analyte List

The SMVOC samples were analyzed for the volatile organic compound target analytes given in Table 5. Analyses of SMVOC samples were completed using thermal desorption of the tubes onto a purge-and-trap device. SW-846 Method 5041B was implemented to carry out the thermal desorption. Method 8260B was implemented to analyze the desorbed analytes using GC/MS. The two SMVOC Tenax® tubes from a sample set were analyzed together, while the Anasorb 747® tube was separately analyzed.

A GC/MS library search was performed on each SMVOC sample (including the condensate samples) for non-target analytes, or tentatively identified compounds (TICs). The search was performed for the thirty (30) largest identifiable non-target compounds having a response that was at least 10% of the response of the nearest internal standard, which was spiked at $0.25~\mu g$. The library search was conducted against the National Bureau of Standards library of mass spectral data containing an estimated 75,000 compounds. The matching criteria includes a nominal 85% match of the mass spectral features, and analyst discretion of all identities reported.

Table 5. Volatile organic compound target analyte list.

VOC Target Analyte	CAS Registry Number
Acetone	67-64-1
Acrylonitrile	107-13-1
Benzene	71-43-2
Bromobenzene	108-86-1
Bromochloromethane	74-97-5
Bromodichloromethane	75-27-4
Bromoform	75-25-2
Bromomethane	74-83-9
2-Butanone	78-93-3
n-Butylbenzene	104-51-8
sec-Butylbenzene	135-98-8
tert-Butylbenzene	98-06-6
Carbon disulfide	75-15-0
Carbon tetrachloride	56-23-5
Chlorobenzene	108-90-7
Chlorodibromomethane	124-48-1
Chloroethane	75-00-3
Chloroform	. 67-66-3
Chloromethane	74-87-3
2-Chlorotoluene	95-49-8
4-Chlorotoluene	106-43-4
1,2-Dibromo-3-chloropropane	96-12-8
1,2-Dibromoethane	106-93-4
Dibromomethane	74-95-3
1,2-Dichlorobenzene	95-50-1
1,3-Dichlorobenzene	541-73-1
1,4-Dichlorobenzene	106-46-7
Dichlorodifluoromethane	75-71-8
1,1-Dichloroethane	75-34-3
1,2-Dichloroethane	107-06-2
1,1-Dichloroethene	75-35-4
cis-1,2-Dichloroethene	156-59-2
trans-1,2-Dichloroethene	156-60-5
1,2-Dichloropropane	78-87-5
1,3-Dichloropropane	142-28-9
2,2-Dichloropropane	594-20-7
1,1-Dichloropropene	563-58-6
cis-1,3-Dichloropropene	10061-01-5
trans-1,3-Dichloropropene	10061-02-6

Table 5. Volatile organic compound target analyte list.

VOC Target Analyte	CAS Registry Number
Ethylbenzene	100-41-4
Hexachlorobutadiene	87-68-3
2-Hexanone	591-78-6
Isopropylbenzene	98-82-8
p-Isopropyltoluene	99-87-6
Methylene chloride	75-09-2
4-Methyl-2-pentanone	108-10-1
Naphthalene	91-20-3
n-Propylbenzene	103-65-1
Styrene	100-42-5
1,1,1,2-Tetrachloroethane	630-20-6
1,1,2,2-Tetrachloroethane	79-34-5
Tetrachloroethene	127-18-4
Toluene	108-88-3
1,2,3-Trichlorobenzene	87-61-6
1,2,4-Trichlorobenzene	120-82-1
1,1,1-Trichloroethane	71-55-6
1,1,2-Trichloroethane	79-00-5
Trichloroethene	79-01-6
Trichlorofluoromethane	75-69-4
1,2,3-Trichloropropane	96-18-4
1,2,4-Trimethylbenzene	95-63-6
1,3,5-Trimethylbenzene	108-67-8
Vinyl chloride	75-01-4
m-Xylene & p-Xylene	136777-61-2
o-Xylene	95-47-6

5.1.2 VOC Analytical Results

Tabulated data summaries for the SMVOC data are given in Appendix A. These tables have been extracted from the STL Analytical Laboratory Final Report for this project. The run total (in total μ g) for each analyte represents the sum of the amounts found in all of the SMVOC sets collected during each sampling run, including the amount of analyte found in the SMVOC condensate sample. The SMVOC condensate sample results were obtained by multiplying the observed concentration in mass/volume units (μ g/L) by the final condensate volume (L) collected to obtain a result in units of mass (μ g).

The Method 0031 SMVOC Tube Set Total (total $\mu g/set$) result consists of the sum of the analytical results for the two Tenax[®] resin tube contents (analyzed together) and the analytical result for the Anasorb 747[®] tube contents. The calculation is conducted as follows:

(Total μg on the Tenax® Tubes #1 and #2) + (Total μg on the Anasorb 747® Tube)

= Total μg on the Method 0031 SMVOC tube set

5.1.3 VOC Data Quality Assessment

The tubes were shipped to the analytical laboratory and analyzed within two week in accordance with EPA guidance and the QAPjP. The SMVOC samples were received at the laboratory in good condition. The samples were held on ice until the laboratory custodian checked the cooler temperatures and logged the samples at the laboratory.

All samples were processed through the analytical methods as planned, and analytical results were obtained for all of the expected analyses, with one exception. Low surrogate recoveries were obtained for sample A-3364 (The Anasorb 747® tube for Run 1, Set 2) and therefore the data for this sample are not usable. The results for all other samples meet the data quality objectives (DQOs) specified in the QAPjP and are therefore usable for the NWCF ETS offgas emissions inventory and risk assessment.

The toluene result for the Run 2, Set 2 Tenax Anasorb 747 tube appears to be an outlier. This particular result was over ten times higher than any other back-half result. Also, this result was over eight times higher than the corresponding front-half result. There were several other runs that exhibited higher toluene results for the back-half fraction than the front-half fraction. These results are not consistent with the results for other analytes, including benzene, which clearly did not break through the front-half SMVOC tubes. These inconsistent results imply that there was a source of fugitive contamination available to these tubes. Since the field and trip blanks did not generally exhibit toluene (only one front-half field blank and one back-half trip blank had "hits" for toluene), it appears that the sample tubes were exposed to environments containing some toluene that were not available to the field or trip blanks.

The methylene chloride results for Run 1, Set 1 and Set 2, were inconsistent with subsequent test runs. The methylene chloride result for Run 1, Set 1, was much higher than for any other analysis. The Run 1, Set 2 result was lower than the result for Run 1. The remaining results were lower in concentration, and appear to reside within three standard deviations of the mean value. Also, the acetone result for Run 1, Set 1, was the highest result for acetone that was found in any of the offgas samples. The cause of the high early results is assumed to be contamination of the sampling probe with acetone and methylene chloride. The SVOC train was used immediately prior to collection of the SMVOC samples. During this sampling event, the MM-5 probe (that was used for the SVOC train and had been rinsed with acetone and methylene chloride at the conclusion of SVOC sample collection) was used to collect the SMVOC samples. Since the same probe was rinsed with acetone and methylene chloride, it is likely that these solvents found in the offgas VOC samples originated in the equipment, not in the offgas.

The SMVOC runs results show a rapid decrease in methylene chloride in the second and third tube sets for the first run. This supports the supposition that the higher amounts of methylene chloride in the first run were an artifact of the field procedures. In spite of this supposition, the result was used when calculating the emissions health risk since the risk factor and emissions rate, although higher than actual emissions, does not impact the outcome of the cumulative emissions risk.

5.1.3.1 VOC Breakthrough Evaluation

The analysis scheme of the three-tube configuration of Method 0031 included individual analysis of each resin sample. The historical criterion for evaluating occurrences of SMVOC system breakthrough states that less than 30 percent by weight of an analyte should be detected on the back tube relative to the total amount observed on the front two tubes. That is, the Anasorb 747® resin tube should not contain more than 30 percent of the analyte total found on the front Tenax® resin samples. The criterion does not apply when less than 75 nanograms of an analyte are detected on the back trap. Additionally, the criterion does not apply when the analytes are the ultra-low boiling point analytes such as dichlorodifluoroethane, chloromethane, bromomethane, chloroethane, and vinyl chloride.

The SMVOC apparatus was operated under near optimum conditions during on-site sampling. The sample stream entered the first resin tube at a nominal 10°C as monitored by a thermocouple at the base of the condenser. A 20-liter sample was the maximum volume of gas pulled across the resin tubes, and the sampling rate was a standard SMVOC approach at approximately 0.50 liters per minute. Under these conditions the analytes were universally trapped on the Tenax® tubes except for the low boiling point analytes noted above. There are some anomalous results for acetone and toluene in which back-half fractions contained more than 30 percent of the front-half amount, and the total was more than 75 nanograms. These results appear to be derived from fugitive contamination sources, and do not represent breakthrough to the back half SMVOC tubes under these conditions. Acetone and toluene are solvents used during sampling for rinsing glassware and tubing. The reagent sources are assumed to be the source of the fugitive contamination.

5.1.3.2 VOC Blank Data Assessment

Several types of Method 0031 SMVOC blanks were evaluated during the offgas sampling analyses in order to assess the sampling and analytical environments for possible fugitive contamination sources. SMVOC field blanks were collected in order to assess the sampling train environments for possible fugitive contamination sources. Standard SMVOC trip blanks were also collected, as well as a deionized water trip blank. A comparison of the blank samples is shown in Table 6.

The SMVOC tube field blank results do not indicate field contamination by any target analytes except the three common laboratory contaminants, acetone, methylene chloride and toluene. The data for the SMVOC tube trip blanks also exhibit the presence of these three target analytes, in addition to bromomethane that was also observed on the Tenax® tubes, and dichlorodifluoromethane that was observed on the Anasorb 747® tube. The aqueous trip blank did not exhibit general contamination. The laboratory blanks associated with these samples also exhibit the presence of acetone and methylene chloride, but at levels too low to account for the observed levels of acetone in the trip blanks. Methylene chloride, acetone, and toluene are typically considered common laboratory contaminants during data validation. The laboratory method blank and field blank results do not, however, exhibit toluene.

Table 6. Comparison of SMVOC blank sample results.

Table 6. Comparison of	I SMVC		ank san	iple r	esults. SMV	<u>/OC</u>	SMV	'OC	1		I		.	
	SIVIV	OC.	SMV	OC.	SIVIV	OC	SIVIV	OC .	SMV	OC	SMV	OC.	SMV	OC
	Tenax	Pair	0.11		Tenax	Pair	Anasor							
	Field I	Blank	Anasor Field I		Field F	Blank	Field I	Blank	Tenax Pa Blan		Anasor Trip E		D.I. Wat Bla	
	06/21	1/01ª	06/21	/01ª	06/21	/01ª	06/21	/01ª	06/20	/01ª	06/20	/01ª	06/22	2/01ª
	A-3:	392	A-33	393	A-33	394	A-33	395	A-34	141	A-34	142	A-33	396
Analyte	(μ	g)	(μ	g)	(μչ	g)	(με	g)	(με	g)	(μչ	g)	(μg/	/L)
Acetone	0.063	J,B	0.063	J,B	0.063	J,B	0.071	J,B	0.82	В	0.27	В	1.2	U
Acrylonitrile	0.29	U	0.29	U	0.29	U	0.29	U	0.29	U	0.29	U	12	U
Benzene	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.63	U
Bromobenzene	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.84	U
Bromochloromethane	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.66	U
Bromodichloromethane	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.011	U	0.79	U
Bromoform	0.019	U	0.019	U	0.019	U	0.019	U	0.019	U	0.019	U	0.60	U
Bromomethane	0.015	U	0.015	U	0.015	U	0.015	U	0.015	J	0.015	U	0.47	U
2-Butanone	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	2.2	U
n-Butylbenzene	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.60	U
sec-Butylbenzene	0.0084	U	0.0084	U	0.0084	U	0.0084	U	0.0084	U	0.0084	U	0.39	U
tert-Butylbenzene	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.34	U
Carbon disulfide	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.26	U
Carbon tetrachloride	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.47	U
Chlorobenzene	0.0084	U	0.0084	U	0.0084	U	0.0084	U	0.0084	U	0.0084	U	0.63	U
Chlorodibromomethane	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.015	U	0.68	U
Chloroethane	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.34	U
Chloroform	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.73	U
Chloromethane	0.013	U	0.013	U	0.013	U	0.013	U	0.013	U	0.022	J	0.26	U
2-Chlorotoluene	0.0047	U	0.0047	U	0.0047	U	0.0047	U	0.0047	U	0.0047	U	0.50	U
4-Chlorotoluene	0.0047	U	0.0047	U	0.0047	U	0.0047	U	0.0047	U	0.0047	U	0.50	U
1,2-Dibromo-3-chloropropane	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	0.029	U	1.0	U
1,2-Dibromoethane	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	1.0	U
Dibromomethane	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.71	U
1,2-Dichlorobenzene	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.45	U
1,3-Dichlorobenzene	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.52	U
1,4-Dichlorobenzene	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U	0.014	U	0.55	U
Dichlorodifluoromethane	0.013	U	0.013	U	0.013	U	0.013	U	0.013	U	0.022	J	0.26	U
1.1-Dichloroethane	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.39	U
1,2-Dichloroethane	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.47	U
1.1-Dichloroethene	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.37	U
cis-1,2-Dichloroethene	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.50	U
trans-1,2-Dichloroethene	0.019	U	0.010	U	0.010	U	0.019	U	0.019	U	0.019	U	0.31	U
1,2-Dichloropropane	0.013	U	0.019	U	0.019	U	0.013	U	0.013	U	0.013	U	0.55	U
					0.013	U	0.013	U	0.013	U	0.013	U	0.52	U
1,3-Dichloropropane	0.019	U	0.019	U	0.019	U	0.019	U	0.019	U	0.019	U	0.32	U

Table 6. Comparison of SMVOC blank sample results.

Table 6. Comparison of			ank sam	iple re			,							
	SMV	OC			SMV	OC	SMV	OC					0.0	,o.a
	Tenax	Pair	SMV	OC	Tenax	Pair	Anasor	b 747	SMV	OC.	SMV	OC.	SMV	/OC
	Tellax	1 an	Anasor	b 747	Tonax		Field E		Tenax Pa	air Trip	Anasor	b 747	D.I. Wa	ter Trip
	Field E	Blank	Field E		Field I	Blank			Blaı		Trip B	llank	Bla	ınk
	06/21	/01ª	06/21	/01ª	06/21	/01ª	06/21	/01ª	06/20	/01ª	06/20	/01ª	06/22	2/01ª
	A-33	92	A-33	193	A-33	394	A-33	95	A-34	41	A-34	142	A-3	396
Analyte	(με	g)	ξη()	g)	(με	g)	(µg	<u>;)</u>	(µg	<u>(</u>)	(μ <u>ε</u>	g)	(µg.	/L)
2,2-Dichloropropane	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.26	U
1,1-Dichloropropene	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.020	U	0.37	U
cis-1,3-Dichloropropene	0.012	U	0.012	U	0.012	U	0.012	U	0.012	U	0.012	U	0.71	U
trans-1,3-Dichloropropene	0.015	U	0.012	U	0.015	U	0.015	U	0.015	U	0.015	U	0.66	U
Ethylbenzene	0.0092	U	0.0092	U	0.0092	U	0.0092	U	0.0092	U	0.0092	Ŭ	0.50	U
Hexachlorobutadiene	0.025	U	0.025	U	0.025	U	0.025	Ú	0.025	U	0.025	U	0.58	U
2-Hexanone	0.063	U	0.063	U	0.063	U	0.063	U	0.063	U	0.063	U	0.84	U
Isopropylbenzene	0.0063	U	0.0063	U	0.0063	U	0.0063	U	0.0063	U	0.0063	U	0.42	U
p-Isopropyltoluene	0.012	U	0.012	U	0.012	U	0.012	U	0.012	U	0.012	U	0.42	U
Methylene chloride	0.025	В	0.027	В	0.025	J,B	0.028	В	0.15		0.15		1.3	J,B
4-Methyl-2-pentanone	0.071	U	0.071	U	0.071	U	0.071	U	0.071	U	0.071	U	0.71	U
Naphthalene	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.26	U
n-Propylbenzene	0.0055	U	0.0055	U	0.0055	U	0.0055	U	0.0055	U	0.0055	U	0.52	U
Styrene	0.0068	U	0.0068	U	0.0068	U	0.0068	U	0.0068	U	0.0068	U	0.52	U
1,1,1,2-Tetrachloroethane	0.0097	U	0.0097	U	0.0097	U	0.0097	U	0.0097	U	0.0097	U	0.55	U
1,1,2,2-Tetrachloroethane	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.58	U
Tetrachloroethene	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.016	U	0.50	U
Toluene	0.0066	U	0.12		0.0066	U	0.0066	U	0.0066	U	0.066		0.66	U
1,2,3-Trichlorobenzene	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.26	U
1,2,4-Trichlorobenzene	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.58	U
1,1,1-Trichloroethane	0.022	U	0.022	U	0.022	U	0.022	U	0.022	U	0.022	U	0.42	U
1,1,2-Trichloroethane	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.52	U
Trichloroethene	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.017	U	0.47	U
Trichlorofluoromethane	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.018	U	0.26	U
1,2,3-Trichloropropane	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.025	U	0.84	U
1,2,4-Trimethylbenzene	0.0076	U	0.0076	U	0.0076	U	0.0076	U	0.0076	U	0.0076	U	1.0	U
1,3,5-Trimethylbenzene	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.45	U
Vinyl chloride	0.0066	U	0.0066	U	0.0066	U	0.0066	U	0.0066	U	0.0066	U	1.6	U
m-Xylene & p-Xylene	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	0.050	U	1.0	U
o-Xylene	0.0066	U	0.0066	U	0.0066	U	0.0066	U	0.0066	U	0.0066	U	0.60	U
a. This is the date of sample collect	ion		A				J							

Acetone, methylene chloride, and toluene are used as rinsing solvents during Modified Method 5 sampling. These common solvents were present in the sampling area during the test series. Also, these compounds were observed in the field blanks at somewhat higher levels. Acetone was observed at a relatively high level in the SMVOC Tenax Pair Field Blank. These results indicate that fugitive contamination sources may have existed during the sampling and transport of these samples Per the SMVOC method restrictions, results from the SMVOC sampling were not blank corrected.

A practical approach was devised to use the front-half sample results for Run 1, Set 2 despite the fact that the corresponding back-half results are unusable. In order to use these results in the train total for the run, an estimate was made of the results for the corresponding back-half fraction. This estimate was obtained by averaging the results for the back halves of the remaining three sets of tubes for this run. This value is equivalent to calculating the back-half concentrations based on three (3) sets of tubes, or a total of 60 L of offgas. This approach has the benefit of not discarding valid data, in keeping with the general principle that all data obtained should be disclosed to the monitoring agencies.

5.1.3.3 VOC Internal Standard Recovery Assessment

Three internal standard compounds are spiked prior to thermal desportion of the SMVOC adsorbent tube. The same three internal standards were spiked into the aliquots of VOST condensate samples that were analyzed. These standards are used as a basis for the calculations of the concentrations of the target analytes and surrogates. A summary of the volatiles internal standard performance for all of the samples collected during Runs 1, 2, 3, and 4 are listed in Table 7. Method SW-8260 requires internal standard recovery to be at least 50 percent but not more than 200 percent of internal standard (IS) areas for the daily standard. Internal standard performance for all samples and all matrices was well within required limits (-50 to +100 percent difference relative to the IS areas for the daily standard) for all samples.

Table 7. Volatile Organic Compound (VOC) internal standard recoveries.							
			Per	cent Differ	ence		
Field Sample No.	Run No.	Sample Description	Internal Standard #1 Fluorobenzene	Internal Standard #2 Chlorobenzene-d ₅	Internal Standard #3 1,4-Dichlorobenzene-d ₄		
A-3359/A-3360	0031-STRT-1	Tenax Tubes #1 & #2 (Set #1)	1.7	1.8	-4.6		
A-3362/A-3363	0031-STRT-1	Tenax Tubes #1 & #2 (Set #2)	3.2	-4.9	-14		
A-3365/A-3366	0031-STRT-1	Tenax Tubes #1 & #2 (Set #3)	-2.2	-10	-19		
A-3368/A-3369	0031-STRT-1	Tenax Tubes #1 & #2 (Set #4)	-6.1	-16	-23		
A-3379/A-3380	0031-STRT-2	Tenax Tubes #1 & #2 (Set #1)	-6.4	-12	-20		
A-3382/A-3383	0031-STRT-2	Tenax Tubes #1 & #2 (Set #2)	-8.2	-11	-19		
A-3385/A-3386	0031-STRT-2	Tenax Tubes #1 & #2 (Set #3)	-14	-23	-32		
A-3388/A-3389	0031-STRT-2	Tenax Tubes #1 & #2 (Set #4)	-15	-22	-32		
A-3409/A-3410	0031-END-1	Tenax Tubes #1 & #2 (Set #1)	-18	-23	-32		
A-3412/A-3413	0031-END-1	Tenax Tubes #1 & #2 (Set #2)	-15	-20	-30		
A-3415/A-3416	0031-END-1	Tenax Tubes #1 & #2 (Set #3)	-6.7	-8.1	-15		
A-3418/A-3419	0031-END-1	Tenax Tubes #1 & #2 (Set #4)	-1.8	-4.3	-9.1		
A-3428/A-3429	0031-END-2	Tenax Tubes #1 & #2 (Set #1)	-25	-34	-37		
A-3431/A-3432	0031-END-2	Tenax Tubes #1 & #2 (Set #2)	-23	-32	-39		
A-3434/A-3435	0031-END-2	Tenax Tubes #1 & #2 (Set #3)	-26	-37	-44		
A-3437/A-3438	0031-END-2	Tenax Tubes #1 & #2 (Set #4)	-27	-38	-43		
A-3392	0031-STRT-2	Tenax Tube Pair Field Blank	-22	-30	-38		
A-3394	0031-STRT-2	Tenax Tube Pair Trip Blank	-18	-30	-39		
A-3441	0031-END-1	Tenax Tube Pair Field Blank	-17	-15	-28		
A-3361	0031-STRT-1	Anasorb 747 Tube (Set #1)	-16	-14	-24		
A-3364	0031-STRT-1	Anasorb 747 Tube (Set #2)	-28	-28	-33		
A-3367	0031-STRT-1	Anasorb 747 Tube (Set #3)	-28	-31	-36		
A-3370	0031-STRT-1	Anasorb 747 Tube (Set #4)	-27	-28	-28		
A-3381	0031-STRT-2	Anasorb 747 Tube (Set #1)	-36	-42	-46		
A-3384	0031-STRT-2	Anasorb 747 Tube (Set #2)	-25	-28	-29		
A-3387	0031-STRT-2	Anasorb 747 Tube (Set #3)	-24	-26	-28		
A-3390	0031-STRT-2	Anasorb 747 Tube (Set #4)	-17	-22	-25		
A-3411	0031-END-1	Anasorb 747 Tube (Set #1)	-13	-11	-17		
A-3414	0031-END-1	Anasorb 747 Tube (Set #2)	-14	-13	-21		
A-3417	0031-END-1	Anasorb 747 Tube (Set #3)	-16	-12	-21		
A-3420	0031-END-1	Anasorb 747 Tube (Set #4)	-19	-12	-20		

Table 7. Volatile Organic Compound (VOC) internal standard recoveries.

Table 7. Volatile Organic Compound (VOC) internal standard recoveries.						
				Perc	ent	Differ	enc	e^a
Field Sample No.	Run No.	Sample Description	Internal Standard #1	Fluorobenzene	Internal Standard #2	Chlorobenzene-d ₅	Internal Standard #3	1,4-Dichlorobenzene-d4
A-3430	0031-END-2	Anasorb 747 Tube (Set #1)	-10	6	_	25		-33
A-3433	0031-END-2	Anasorb 747 Tube (Set #2)	-24	4	-	29		-35
A-3436	0031-END-2	Anasorb 747 Tube (Set #3)	-20	О	-	30		-38
A-3439	0031-END-2	Anasorb 747 Tube (Set #4)	-24	4	-	39		-33
A-3393	0031 - STRT-2	Anasorb 747 Field Blank	-20	0	-	28		-36
A-3395	0031-STRT-2	Anasorb 747 Trip Blank	-2	1	-	25		-31
A-3442	0031-END-1	Anasorb 747 Field Blank	-19	9	-	22		-32
A-3371	0031-STRT-1	VOST Condensate	-9.	3	-	7.0		-13
A-3391	0031-STRT-2	VOST Condensate	-10)	-	8.8		-15
A-3421	0031-END-1	VOST Condensate	-7.	2	-	5.0		-9.8
A-3440	0031-END-2	VOST Condensate	-8.	1	•	5.6		-11
A-3396	0031-STRT-2	VOST D.I. Water Trip Blank	-12	2	-	9.3		-15

a. Recoveries of internal standard compounds are not typically calculated for samples analyzed by Method 8260B and 8270C. Percent Difference is calculated using the following equation.

$$Percent \ Difference (\%D) = \frac{Observed \ Value - Expected \ Value}{Expected \ Value} \ x \ 100\%$$

Where: Observed Value = the area of the internal standard in the sample *and*Expected Value = the area of the internal standards in the daily standard

5.1.3.4 VOC Surrogate Recovery Assessment

Four surrogate compounds were spiked onto all of the VOST samples before the thermal desorption process was initiated. The surrogate recoveries for the NWCF ETS offgas samples are presented in Table 8. Surrogate recoveries are within the targeted acceptance range (percent recovery between 50-150%), meeting the project DQOs except for sample A-3364. Low surrogate recoveries were obtained for sample A-3364 (The Anasorb 747® tube for Run 1, Set 2) and therefore the data for this sample are not usable. The results for Sample A-3364 indicate normal recoveries for the internal standard compounds, but very low recoveries for the surrogate compounds.

Table 8. Volatile Organic Compound (VOC) surrogate compound recoveries.

				Percent	Recovery	
Field Sample No.	Run No.	Sample Description	Dibromofluoromethane	1,2-Dichtoroethane-d ^b	Toluene-d ₈	Bromofluorobenzene
A-3359/A-3360	0031-STRT-1	Tenax Tubes #1 & #2 (Set #1)	84	81	101	83
A-3362/A-3363	0031-STRT-1	Tenax Tubes #1 & #2 (Set #2)	90	85	114	99
A-3365/A-3366	0031-STRT-1	Tenax Tubes #1 & #2 (Set #3)	88	84	113	98
A-3368/A-3369	0031-STRT-1	Tenax Tubes #1 & #2 (Set #4)	85	80	115	92
A-3379/A-3380	0031-STRT-2	Tenax Tubes #1 & #2 (Set #1)	88	83	111	95
A-3382/A-3383	0031-STRT-2	Tenax Tubes #1 & #2 (Set #2)	91	86	110	97
A-3385/A-3386	0031-STRT-2	Tenax Tubes #1 & #2 (Set #3)	81	75	108	85
A-3388/A-3389	0031-STRT-2	Tenax Tubes #1 & #2 (Set #4)	87	80	114	90
A-3409/A-3410	0031-END-1	Tenax Tubes #1 & #2 (Set #1)	84	79	109	85
A-3412/A-3413	0031-END-1	Tenax Tubes #1 & #2 (Set #2)	85	80	109	91
A-3415/A-3416	0031-END-1	Tenax Tubes #1 & #2 (Set #3)	83	78	101	82
A-3418/A-3419	0031-END-1	Tenax Tubes #1 & #2 (Set #4)	87	86	103	80
A-3428/A-3429	0031-END-2	Tenax Tubes #1 & #2 (Set #1)	87	79	116	87
A-3431/A-3432	0031-END-2	Tenax Tubes #1 & #2 (Set #2)	79	74	105	86
A-3434/A-3435	0031-END-2	Tenax Tubes #1 & #2 (Set #3)	83	77	117	90
A-3437/A-3438	0031-END-2	Tenax Tubes #1 & #2 (Set #4)	90	82	121	92
A-3392	0031-STRT-2	Tenax Tube Pair Field Blank	76	70	102	86
A-3394	0031-STRT-2	Tenax Tube Pair Trip Blank	58	49¹	60	411
A-3441	0031-END-1	Tenax Tube Pair Field Blank	82	77	95	86
A-3361	0031-STRT-1	Anasorb 747 Tube (Set #1)	83	79	94	77
A-3364	0031-STRT-1	Anasorb 747 Tube (Set #2)	7.9 ¹	6.4	2.91	3.6 ¹
A-3367	0031-STRT-1	Anasorb 747 Tube (Set #3)	106	100	121	92
A-3370	0031-STRT-1	Anasorb 747 Tube (Set #4)	86	83	99	82
A-3381	0031-STRT-2	Anasorb 747 Tube (Set #1)	96	88	117	86
A-3384	0031-STRT-2	Anasorb 747 Tube (Set #2)	73	71	90	74

32

Table 8. Volatile Organic Compound (VOC) surrogate compound recoveries.

				Percent l	Recoverya	
Field Sample No.	Run No.	Sample Description	Dibromofluoromethane	1,2-Dichloroethane-d ^b	Toluene-d _s	Bromofluorobenzene
A-3387	0031-STRT-2	Anasorb 747 Tube (Set #3)	77	73	92	74
A-3390	0031-STRT-2	Anasorb 747 Tube (Set #4)	73	68	96	79
A-3411	0031-END-1	Anasorb 747 Tube (Set #1)	87	84	101	84
A-3414	0031-END-1	Anasorb 747 Tube (Set #2)	91	86	107	86
A-3417	0031-END-1	Anasorb 747 Tube (Set #3)	91	88	104	88
A-3420	0031-END-1	Anasorb 747 Tube (Set #4)	78	75	96	81
A-3430	0031-END-2	Anasorb 747 Tube (Set #1)	83	76	105	88
A-3433	0031-END-2	Anasorb 747 Tube (Set #2)	88	79	110	82
A-3436	0031-END-2	Anasorb 747 Tube (Set #3)	82	75	108	85
A-3439	0031-END-2	Anasorb 747 Tube (Set #4)	85	79	110	87
A-3393	0031-STRT-2	Anasorb 747 Field Blank	77	68	99	73
A-3395	0031-STRT-2	Anasorb 747 Trip Blank	82	74	92	75
A-3442	0031-END-1	Anasorb 747 Field Blank	83	77	98	81
A-3371	0031-STRT-1	VOST Condensate	102	104	106	106
A-3391	0031-STRT-2	VOST Condensate	100	103	107	106
A-3421	0031-END-1	VOST Condensate	101	101	106	105
A-3440	0031-END-2	VOST Condensate	100	103	106	105
A-3396	0031-STRT-2	VOST D.I. Water Trip Blank	102	107	107	106
Laboratory T	 Target Recovery Rai	nge for Tenax [®] & Anasorb 747 [®] Tubes:	50-150	50-150	50-150	50-150
	Laboratory Targe	t Recovery Range for Aqueous Samples:	80-120	80-120	80-120	72-135

a. Percent Recovery is calculated using the following equation:

Percent Re cov ery (%R) =
$$\frac{Observed\ Value}{Expected\ Value} \times 100\%$$

Where: Observed Value = the measured mass of the surrogate standard in the sample and Expected Value = the mass of the surrogate standard spiked into the sample.

This percent recovery is outside of the laboratory target recovery range.

5.1.3.5 VOC Analytical Data Quality Assessment

The sampling and analytical objectives expected for this data set were to present an acceptable characterization of the project target volatile organic compounds from the NWCF ETS offgas. The data quality indicators collectively indicate that the sampling and analytical processes for the SMVOC samples were in control during the sampling runs. Data have been collected and reviewed that allow the relative precision and accuracy to be measured for the target analytes. The data quality indicators indicate that most of the data are of acceptable quality, and that sufficient data has been obtained to characterize the project target volatile organic compounds from the NWCF ETS offgas.

There were several indications that fugitive emissions may have been present during sampling. Acetone, methylene chloride and toluene were present in at least some of the field and trip blanks. Some inconsistency of the methylene chloride results has been discussed. Toluene exhibited results that simply do not make sense, particularly with respect to higher levels of toluene that were detected in some of the back half samples. Results for these particular three constituents are not considered to demonstrate that these constituents are truly in the ETS offgas at these concentrations. These are the major classical environmental laboratory sample preparation solvents that are often detected as contaminants in sample results.

The only serious quality control deficiency was the low surrogate recovery for the Tenax[®]/Anasorb 747[®] sample for Run 1 (Set 2). This deficiency is adequately handled by the substitution of average backhalf results from the other Run 1 tube sets.

5.2 Semi-volatile Organic Compounds

A standard U.S. EPA Method 0010 (Modified Method 5, or MM-5) sampling train configuration was used to collect samples of the NWCF ETS offgas for the assessment of semi-volatile organic compounds (SVOCs). A total nominal volume of 3.0 dscm of offgas was sampled in each run over 3-4 hours. The Method 0010 SVOC train configuration is comprised of six fractions:

- particulate filter
- solvent rinse of the front half of the filter holder, the sampling probe and the nozzle
- XAD-2[®] resin tube.
- solvent rinse of the back half of the filter holder, the coil condenser and connecting glassware,
- composite sample containing the stack gas condensate and impinger contents, and
- impinger and connecting glassware solvent rinses.

A trip/reagent blank was collected and a set of blank train (field blank) samples were analyzed to assess extraneous sources of contamination available to these samples.

5.2.1 SVOC Target Analyte List

Analyses of SVOC samples were completed per SW-846 Methods 3542 and 8270C by first extracting the samples with methylene chloride, then analyzing the extracts using GC/MS. The SVOC target analytes are listed in Table 9.

Table 9. SVOC target analyte list.

Analyte	CAS Registry Number				
Acenaphthene	83-32-9				
Acenaphthylene	208-96-8				
Acetophenone	98-86-2				
Aniline	62-53-3				
Anthracene	120-12-7				
Benzidine	92-87-5				
Benzoic acid	65-85-0				
Benzo(a)anthracene	56-55-3				
Benzo(a)pyrene	50-32-8				
Benzo(b)fluoranthene	205-99-2				
Benzo(ghi)perylene	191-24-2				
Benzo(k)fluoranthene	207-08-9				
Benzyl alcohol	100-51-6				
bis(2-Chloroethoxy)methane	111-91-1				
bis(2-Chloroethyl)ether	111-44-4				
bis(2-Ethylhexyl)phthalate	117-81-7				
4-Bromophenyl-phenylether	101-55-3				
Butylbenzylphthalate	85-68-7				
Carbazole	86-74-8				
4-Chloro-3-methylphenol	59-50-7				
4-Chloroaniline	106-47-8				
2-Chloronaphthalene	91-58-7				
2-Chlorophenol	95-57-8				
4-Chlorophenyl phenyl ether	7005-72-36				
Chrysene	218-01-9				
Di-n-butylphthalate	84-74-2				
Di-n-octylphthalate	117-84-0				
Dibenz(a,h)anthracene	53-70-3				
Dibenzofuran	132-64-9				
1,2-Dichlorobenzene	95-50-1				
1,3-Dichlorobenzene	541-73-1				
1,4-Dichlorobenzene	106-46-7				
3,3'-Dichlorobenzidine	91-94-1				
2,4-Dichlorophenol	120-83-2				
Diethylphthalate	84-66-2				
Dimethyl phthalate	131-11-3				
2,4-Dimethylphenol	105-67-9				

Table 9. SVOC target analyte list.

Analyte	CAS Registry Number
4,6-Dinitro-2-methylphenol	534-52-1
2,4-Dinitrophenol	51-28-5
2,4-Dinitrotoluene	121-14-2
2,6-Dinitrotoluene	606-20-2
1,2-Diphenylhydrazine	122-66-7
Fluoranthene	206-44-0
Fluorene	86-73-7
Hexachlorocyclopentadiene	77-47-4
Hexachlorobenzene	118-74-1
Hexachlorobutadiene	87-68-3
Hexachloroethane	67-72-1
Indeno(1,2,3-cd)pyrene	193-39-5
Isophorone	78-59-1
2-Methylnaphthalene	91-57-6
2-Methylphenol	95-48-7
3-Methylphenol & 4-Methylphenol	65794-96-9
N-Nitroso-di-n-propylamine	621-64-7
N-Nitrosodimethylamine	62-75-9
N-Nitrosodiphenylamine	86-30-6
Naphthalene	91-20-3
2-Nitroaniline	88-74-4
3-Nitroaniline	99-09-2
4-Nitroaniline	100-01-6
Nitrobenzene	98-95-1
2-Nitrophenol	88-75-5
4-Nitrophenol	100-02-7
2,2'-Oxybis(1-chloropropane)	108-60-1
Pentachlorobenzene	608-93-5
Pentachloronitrobenzene	82-68-8
Pentachlorophenol	87-86-5
Phenanthrene	85-01-8
Phenol	108-95-2
Pyrene	129-00-0
Pyridine	110-86-1
1,2,4-Trichlorobenzene	120-82-1
2,4,5-Trichlorophenol	95-95-4
2,4,6-Trichlorophenol	88-06-2
1,2,4,5-Tetrachlorobenzene	95-94-3

The samples were also analyzed for non-target organic compounds as directed in the QAPjP. A GC/MS library search was performed on each SVOC sample (including the condensate samples) for TICs (tentatively identified compounds). The search was performed for the thirty largest non-target compounds that exhibited a response greater than 10% of the response of the nearest internal standard (the extract is spiked at 20 μ g/mL). The standard extract volume was 1.0 mL; hence, the TICs were reported down to a level of 2 μ g when the original extract was not diluted (dilution factor or DF = 1). The backhalf composite sample extracts for Runs 1 through 4 were analyzed at a five-fold dilution (DF = 5); therefore, TICs in these fractions were only reported down to 10 μ g.

The library search was conducted against the National Bureau of Standards library of mass spectral data containing an estimated 75,000 compounds. The matching criteria included a nominal 85% match of the mass spectral features, and analyst discretion of all identities reported. TICs that were derived from column bleed, surrogate addition, or aldol condensation were excluded from the report. Also, compounds that were reported as SMVOC target compounds were not reported as semi-volatile TICs because the SMVOC method provides more reliable data for these compounds.

5.2.2 SVOC Analytical Results

The particulate filter was combined with its associated solvent rinses to form a "front-half" composite sample. The XAD-2 resin tube was combined with its associated solvent rinses to form a "back-half" composite sample. The stack gas condensate, impinger contents and associated glassware rinses were also combined to form a composite sample. These three fractions are analyzed separately. Unique data quality control indicators are used for each fraction.

Tabulated data summaries that present the SVOC data are given in Appendix A. These tables have been extracted from the STL Analytical Laboratory Final Report for this project. For each Method 0010 offgas sampling run, the "SVOC Run Total" for each analyte (in mass units of μg) represents the sum of the amounts found in all of the SVOC fractions collected during that run.

5.2.3 SVOC Data Quality Assessment

The sample fractions were sent to STL via overnight express mail to ensure that sample preservation and analysis schedules required by the QAPjP would be met. All of the samples were received by the laboratory in good condition. Sample extractions were performed within the requirements specified in the QAPjP.

On the basis of all the quality assurance indicators, all of the semi-volatile organic compound data obtained from the SVOC runs are usable and representative of the NWCF ETS offgas contents. The only deficiencies in accuracy and precision indicated by the laboratory control samples (LCS) and matrix spike samples appear to be unrelated to sample data quality.

Blank sample data indicate that sources of fugitive contamination available to the NWCF ETS offgas samples were minimized. Only phthalate esters were found in significant concentrations in the blanks. Although the back half composite containing the XAD-2[®] sample extracts were somewhat hostile to the internal standard compounds, the analysis of these extracts at two levels of dilution appears to provide a reliable assessment of the offgas contents.

Recoveries of the surrogates indicate that the preparation and analysis processes during the SVOC sample determinations were in control with respect to all of the analytes for the offgas sample analyses. The surrogate recoveries are within the prescribed acceptance ranges and do not indicate any bias to the data. Sample dilution was required to achieve acceptable recovery of three of the six internal standards,

and this had the affect of increasing detection limits for those analytes that are correlated to the recovery of these standards.

5.2.3.1 SVOC Blank Data Assessment

A standard SVOC trip/reagent blank (unused, sealed XAD-2® resin tube) and a blank train run samples was collected to assess potential fugitive contamination sources in the sampling environment. Review of the SVOC blank indicates that very little contamination due to fugitive emissions exists in the samples as a result of storage or transport of the sample collection media. The trip blank data exhibited low levels of acetophenone and 1,4-dichlorobenzene that are below the standard laboratory reporting limit (RL). Several tentatively identified compounds were identified in the trip blank data. Notably, benzaldehyde, methyl benzoate, and ethyl benzaldehyde were found, along with several miscellaneous hydrocarbons. These compounds were probably artifacts of the XAD-2® medium or the transport and storage of the samples, and were not found in the laboratory method blanks.

Review of the SVOC blank train results indicates that little contamination of the samples occurred as a result of sample handling or contact with the MM-5 sampling train components. Acetophenone and 1,4-dichlorbenzene were found at low levels that were similar to the trip blank, and may have originated in the sampling media, or were possibly introduced to the media during transport and storage of the samples. The target analytes found in the blank train samples also included di-n-butylphthalate, bis-2-ethylhexylphthalate, and di-n-octylphthalate. The phthalate esters are considered common laboratory contaminants, and are commonly found in certain plastics and plastic tubing. These compounds were not found in the laboratory method blanks, so their origin appears to be with the sampling process. The TICs found in the back-half composite sample of the blank train were similar in identity and concentration to those found in the trip/reagent blank. Benzaldehyde, methyl benzoate, ethyl benzaldehyde, and several miscellaneous hydrocarbons were observed at levels that were similar to the trip/reagent blank results. The origin of these contaminants may have been either the sampling media or the transport and storage of the samples. The front-half and impinger composite samples exhibited low concentrations of some additional TICs that are not found in the back-half composite samples.

5.2.3.2 SVOC Internal Standard Recovery Assessment

Internal standards are used as the basis for calculation of the concentrations of the target analytes and surrogates. Six IS compounds were spiked into all of the sample extracts prior to analysis. Method SW-8270 required limits, in terms of percent difference relative to the IS area for the lab's daily standard, are -50% to +100%. The internal standard responses for the front-half composite sample extracts, and the condensate and impinger contents composite sample extracts were acceptable and do not indicate any deficiency in data quality. Also, the quality assurance samples exhibit acceptable recoveries of the internal standards. The only cases of significantly reduced recovery of the internal standards are noted for the back-half fractions of the offgas samples which include the XAD-2® resin. A summary of the semi-volatile internal standard performance is given in Table 10.

Table 10. SVOC train sample internal standard compound recoveries.

Table 10. SVOC	tram sample	internal standard compound recove	1168.		Perce	ent Diffe	rence (%	(o) ^a	
Field Sample No.	NWCF ETS Sample ID	Sample Description	Analytical Dilution Factor	Internal Standard 1 1,4-Dichlorobenzene-d ₄	Internal Standard 2 Naphthalene-d ₈	Internal Standard 3 Acenaphthene-d ₁₀	Internal Standard 4 Phenanthreene-d ₁₀	Internal Standard 5 Chrysene-d ₁₂	Perylene-d ₁₂
A-3353/A-3354	0010-STRT-1	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	1	9.2	7.5	-5.6	-16	-27	-22
A-3355/A-3356	0010-STRT-1	XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser	5	-28	-29	-61 ^b	-38 .0.62	-57 3.5	-100 ^b
A-3357/A-3358	0010-STRT-1	Solvent Rinses Condensate, Impinger Contents, and	100	7.0	3.2	0.16	-4.4	-20	-16
		Glassware Solvent Rinses							
A-3372/A-3373	0010-STRT-2	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	1	12	6.9	-1.1	-7.0	-24	-20
A-3374/A-3375	0010-STRT-2	XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser	5	2.4	-5.2	-25	-14	-27	-100 ^b
		Solvent Rinses	100	2.4	1.9	-1.2	-3.2	-1.0	-24
A-3376/A-3377	0010-STRT-2	Condensate, Impinger Contents, and Glassware Solvent Rinses	i	-15	-18	-16	-16	-26	-24
A-3397/A-3398	0010-STRT-2	Blank Train Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	1	5.3	2.4	-5.8	-11	-24	-22
A-3399/A-3400	0010-STRT-2	Blank Train XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser Solvent Rinses	1	-0.69	-7.8	-18	-21	-34	-27
A-3401/A-3402	0010-STRT-2	Blank Train Condensate, Impinger Contents, and Glassware Solvent Rinses	1	7.2	9.3	-1.9	-9.8	-22	-18
A-3403/A-3404	0010-END-1	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	1	7.6	9.6	0.92	-13	-26	-20
A-3405/A-3406	0010-END-1	XAD-2 Resin Tube/Back Half of the	5	-6.6	-5.7	-37	-14	-30	-100 ^b
		Filter Holder and Coil Condenser Solvent Rinses	100	1.7	1.8	1.4	-2.4	3.1	-65 ^b
A-3407/A-3408	0010-END-1	Condensate, Impinger Contents, and Glassware Solvent Rinses	1	0.38	4.2	-2.7	-8.3	-22	-20
A-3422/A-3423	0010-END-2	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	1	5.7	4.1	-2.2	-13	-28	-29
A-3424/A-3425	0010-END-2	XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser	5	14	9.9	-28	0.05	-19	-100 ^b
		Solvent Rinses	100	-2.9	-2.0	-6.5	-6.0	-3.7	-66 ^b
A-3426/A-3427	0010-END-2	Condensate, Impinger Contents, and Glassware Solvent Rinses	1	1.8	4.2	-3.1	-8.7	-20	-16
A-3378	0010-STRT-2	XAD-2 Resin Tube Trip/Reagent Blank	1	-14	-15	-22	-20	-29	-27
		Internal Standard Laboratory Percent Difference Acceptance Limits:		-50 to 100	-50 to 100	-50 to 100	-50 to	-50 to 100	-50 to 100

Table 10. SVOC train sample internal standard compound recoveries.

		nernar standard compound reco			Per	cent Dif	erence ((%) ^a	
Field Sample No.	NWCF ETS Sample ID	Sample Description	Analytical Dilution Factor	Internal Standard I 1,4-Dichlorobenzene-d ₄	Internal Standard 2 Naphthalene-d ₈	Internal Standard 3 Acenaphthene-d ₁₀	Internal Standard 4 Phenanthreene-d ₁₀	Internal Standard 5 Chrysene-d ₁₂	Perylene-d ₁₂

a. Recoveries of internal standards are not typically calculated for samples analyzed by Method 8260B and 8270C, and internal standard recoveries are evaluated as Percent Difference from the daily standard. Percent Difference is calculated using the following equation:

Percent Difference (%D) =
$$\frac{Observed\ Value - Expected\ Value}{Expected\ Value} \times 100\%$$

Where: Observed Value = the area of the internal standard in the sample and

Expected Value = the area of the internal standard in the daily standard.

b. This value is outside of the laboratory and project target acceptance range.

The sample extracts of the back-half fractions of the offgas sample trains were analyzed at a dilution factor of five since analysis of the extracts without dilution gave evidence of loss of several of the internal standards. The internal standard perylene-d12 did not recover from the extract analyses at a dilution factor of five. There was insufficient recovery of this internal standard to allow quantification of the related target analytes without applying further dilution. The internal standard compounds acenaphthene-d10 and chrysene-d12 also exhibited recoveries that are lower than the target acceptance criteria in the 1:5 analysis of the extract for the back-half fraction extract for Run 1. However, there was sufficient recovery of each of these internal standards to provide useful results for the related target analytes.

A second extract analysis was performed for each of the offgas back-half composite samples at a dilution factor of 100. The back-half composite sample extracts exhibit reduced recovery of perylene-d12 at the increased dilution factor of 100, but there was sufficient recovery of perylene-d12 to quantify the seven target analytes that are calculated relative to it. The results based on perylene-d12 for the 1:100 dilution of the extracts are usable.

5.2.3.3 SVOC Surrogate Recovery Assessment

Six surrogate compounds were spiked onto all of the SVOC samples before extraction per SW-846 Method 8270C. Three of the surrogates are base/neutral compounds, and three of the surrogates are acid extractable. All of the three acid extractable surrogates are phenols, which are a class of organic compounds that contain a benzene ring with the hydroxyl group attached. A sampling surrogate compound was also applied to the XAD-2® resin tubes at the laboratory before sampling. This additional surrogate provides a measurement of the efficiency of the entire process, from sampling to the conclusion of the analysis. The sampling surrogate applied to the XAD-2® tubes used to collect samples was ¹³C₃-naphthalene. This is a base-neutral compound that is distinguished from the native naphthalene by carbon-13 labeling. A summary of the semi-volatile surrogate performance is given in Table 11.

Table 11. SVOC surrogate compound recoveries.

					Percen	t Recove	ry (%)ª		
Field Sample No.	NWCF ETS Sample ID	Sample Description	2-Fluorophenol	Phenol-d ₅	Nitrobenzene-d ₅	2-Fluorobiphenyl	2,4,6- Tribromophenol	Terphenyl-d ₁₄	Surrogate 13 CNanhthalene
A-3353/A-3354	0010-STRT-1	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	71%	66%	66%	70%	75%	76%	NA
A-3355/A-3356	0010-STRT-1	XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser Solvent Rinses	65%	50%	87%	148% ^b	44%	122%	78%
A-3357/A-3358	0010-STRT-1	Condensate, Impinger Contents, and Glassware Solvent Rinses	73%	75%	80%	86%	84%	93%	NA
A-3372/A-3373	0010-STRT-2	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	65%	61%	64%	66%	70%	76%	NA
A-3374/A-3375	0010-STRT-2	XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser Solvent Rinses	68%	55%	84%	106%	52%	96%	86%
A-3376/A-3377	0010-STRT-2	Condensate, Impinger Contents, and Glassware Solvent Rinses	39%	35%	43%	46%	53%	82%	NA
A-3397/A-3398	0010-STRT-2	Blank Train Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	75%	68%	73%	76%	74%	81%	NA
A-3399/A-3400	0010-STRT-2	Blank Train XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser Solvent Rinses	69%	66%	74%	81%	3.1% ^b	82%	78%
A-3401/A-3402	0010-STRT-2	Blank Train Condensate, Impinger Contents, and Glassware Solvent Rinses	67%	71%	72%	79%	75%	89%	NA
A-3403/A-3404	0010-END-1	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	72%	67%	69%	71%	72%	78%	NA
A-3405/A-3406	0010-END-1	XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser Solvent Rinses	79%	57%	90%	128% ^b	50%	100%	86%
A-3407/A-3408	0010-END-1	Condensate, Impinger Contents, and Glassware Solvent Rinses	77%	80%	77%	78%	81%	90%	NA
A-3422/A-3423	0010-END-2	Particulate Filter/Front Half of the Filter Holder and Probe Solvent Rinses	75%	71%	74%	76%	66%	81%	NA
A-3424/A-3425	0010-END-2	XAD-2 Resin Tube/Back Half of the Filter Holder and Coil Condenser Solvent Rinses	68%	55%	92%	134%	54%	110%	85%
A-3426/A-3427	0010-END-2	Condensate, Impinger Contents, and Glassware Solvent Rinses	67%	76%	78%	81%	83%	88%	NA
A-3378	0010-STRT-2	XAD-2 Resin Tube Trip/Reagent Blank	55%	61%	63%	67%	0.0% ^b	84%	66%
		Surrogate Laboratory Percent Recovery Acceptance Range:	19-100%	15-124%	35-122%	34-115%	33-130%	28-132%	50-150%

a. Percent recovery of surrogate compounds is calculated using the following equation:

Percent Re cov ery (%) = Observed Value x 100%

Expected Value

where: Observed Value = the measured mass of the surrogate standard in the sample and Expected Value = the mass of the surrogate standard spiked on the sample.

b. This value is outside of the laboratory and project target acceptance range.

The laboratory surrogate recoveries that were obtained for the front-half composite samples are generally excellent. There are no obvious problems with the analysis of this matrix, which includes the particulate filter and solvent rinses of the front-half of the filter holder and the probe. All of the laboratory surrogate percent recovery values for the front-half samples were all within the target acceptance range. There were no significant differences between the acid surrogate performance for Runs 1 through 4 and the blank train.

The back-half samples exhibited good recoveries for both the base-neutral and the acid extractable surrogates. 2-Fluorobiphenyl recovery from the back-half fractions of Runs 1, 3 and 4 were above the target acceptance range for surrogate recovery, while the percent recovery of 2-fluorobiphenyl for Run 2 was near the upper end of the target acceptance range. The percent recovery of 2-fluorobiphenyl for both the blank train and the XAD-2[®] resin tube trip/reagent blank was near the center of the target acceptance range. Reduced recovery of the related internal standard, acenapthylene-d₁₀ in the offgas samples appears to cause the observed high recoveries of 2-fluorobiphenyl. A high bias to the results for all of the target analytes that are calculated against acenaphthylene-d₁₀ appears to be indicated by the increased recovery of 2-fluorobiphenyl. Inspection of the data shows that there are no positive results based on acenaphthylene-d₁₀. Therefore, the detection limits are defensible and there is no adverse impact on data quality.

Phenol-d₅ and 2-fluorophenol exhibited acceptable recovery in the blank train back-half sample and the XAD-2 trip/reagent blank, but 2,4,6-tribromophenol did not recover well. The 2,4,6-tribromophenol results were much lower than the target acceptance limits, with no recovery at all from the trip/reagent blank sample. These results were atypical of the data set in that the 2,4,6-tribromophenol recoveries in the offgas samples were well within the target acceptance range for all four runs. The associated laboratory method blank exhibited a good recovery of the 2,4,6-tribromophenol, but the laboratory control sample (LCS) and the laboratory control sample duplicate (LCSD) each exhibited a low recovery of this surrogate. Also, the LCS have low recoveries of 4-nitrophenol and pentachlorophenol, which are acidic compounds potentially sensitive to pH affects. There was no control of pH for these solid matrix samples. The surrogates were applied to the matrix in a Soxhlet extractor immediately prior to extraction. There were low levels of nitrates present in the offgas, and it is probable that the XAD-2 samples were rendered slightly acidic by contact with the offgas. Acidic samples are more likely to release the acid extractable surrogates during the extraction process. Recovery of the 2,4,6-tribromophenol was well within the target acceptance limits for the offgas samples; hence, there is no impact on the offgas data quality because the phenomenon is not observed in the offgas sample results.

On the basis of laboratory surrogate recovery, the results for the SVOC train back-half composite sample data were usable for assessment of the NWCF ETS offgas contents. All of the laboratory surrogate recoveries are consistently within the target acceptance range. The condensate, impinger contents and associated glassware rinse samples also exhibited acceptable results for all of the laboratory surrogate compounds. The sampling surrogate compound that was applied to the XAD-2® resin tubes at the laboratory before sampling provide an independent measurement of the efficiency of the entire process, from sampling to the conclusion of the analysis. The $^{13}C_3$ -naphthalene sampling surrogate recovered well from all runs. This further indicates that the data for the SVOCs are reliable.

5.2.3.4 SVOC Laboratory Control Sample and Matrix Spike Sample Performance

Laboratory control samples associated with the front half (glass fiber filter) matrix were prepared and analyzed in duplicate as required by the QAPjP. There are two spiked compounds that exhibited results that were outside the target acceptance limits. The recovery of 2,4-dinitrotoluene in the LCS was slightly below the target acceptance range. The relative percent difference (RPD) for pentachlorophenol was above the target acceptance range. However, neither of these results indicates a significant loss of

data quality. All of the laboratory surrogates in the LCS/laboratory control samples duplicate (LCSD) analyses associated with the front-half samples are within target acceptance ranges.

Laboratory control samples associated with the back-half composite samples were prepared and analyzed in duplicate. The base-neutral surrogate recovery results for the LCS were similar to the results for the field samples, and were within the stated target acceptance range. The LCS exhibit low recoveries of 4-nitrophenol and pentachlorophenol, which are acidic compounds that are sensitive to pH effects. Pentachlorophenol is the most acidic of the spiked compounds, and had almost no recovery. The laboratory control sample and laboratory control sample duplicate both have low recoveries of the acidic laboratory surrogate 2,4,6-tribromophenol. This appears to be because there was no control of pH for these solid samples. The surrogate recoveries of similar compounds were well within target acceptance ranges for the NWCF ETS offgas samples; consequently, there is no impact on the offgas data quality as a result of these low recoveries in the LCS/LCSD.

Laboratory control samples based upon the aqueous matrix were prepared and analyzed in duplicate. The condensate and impinger contents sample for Run 2 was split into three aliquots, and a matrix spike/matrix spike duplicate pair was analyzed. All spiked analyte and surrogate percent recovery and RPD results for the laboratory control and matrix spike samples were within the stated target acceptance ranges.

5.3 Metals

A standard U.S. EPA Method 0060 Multi-Metals Train (MMT) configuration was used to collect NWCF ETS offgas samples for the assessment of metals (including mercury) content. An offgas sample having a nominal volume of 3.0 m³ was collected over a duration of 3-4 hours. Two sample collection runs were completed at the beginning and two at the end of consecutive evaporator batches to provide a total of four runs to characterize metals emissions. The following sample components were collected from the 0060 train after the completion of each run:

- Particle Filter
- 0.1N Nitric Acid (HNO₃) Probe Rinse
- 5% HNO₃/10% H₂O₂ Impinger Contents
- Empty Impinger 4 Contents
- 4% KMnO₄/10% H₂SO₄ Impingers
- 8N HCl Impinger Rinses

Final nitric acid probe rinse samples were collected after the sampling was completed. The glass-lined sampling probe could not be routinely removed from the offgas sampling manifold for rinsing after each run. Instead, the front-half rinse samples were limited to the connecting tubing, filter housing elements and other connecting glassware that were installed outside the manifold assembly. The glass-lined probe was only removed from the offgas line after all offgas trains were completed for the test series. Probe rinse samples of the glass-lined probe were collected to assess the maximum amount of metals that adhered to the inside of the probe during testing. The probes were rinsed three times with acetone, followed by three rinses with 0.1N nitric acid. These samples were combined for metals analysis after the acetone probe rinses were analyzed for PM. Since the same probe was used for all sampling runs used during the test series, a larger volume of offgas was represented by these acetone and nitric acid probe rinses than was pulled through the probe just for metals analysis.

Field reagent and blank samples were collected in compliance with the QAPjP. Laboratory method blanks were also prepared and analyzed in support of the data, as required by SW-846 sample analysis requirements.

5.3.1 Metals Target Analyte List

The target analyte list for the metals is given in Table 12. These metals, except for Hg, were analyzed by inductively coupled argon plasma spectroscopy per EPA Method 6010B. Mercury (Hg) was analyzed using cold vapor atomic absorption spectroscopy (CVAAS) Method 7470A.

Table 12. Metals target analyte list.

Aluminum (Al)	Chromium (Cr)	Nickel (Ni)	
Antimony (Sb)	Cobalt (Co)	Selenium (Se)	
Arsenic (As)	Copper (Cu)	Silver (Ag)	
Barium (Ba)	Lead (Pb)	Thallium (Tl)	
Beryllium (Be)	Manganese (Mn)	Vanadium (V)	
Cadmium (Cd)	Mercury (Hg)	Zinc (Zn)	

5.3.2 Metals Analytical Results

The compatible matrices of the MMT samples were separated into the train's front-half and backhalf samples during the sample preparation steps. The front-half samples consisted of the 0.1N nitric acid probe and filter housing rinses, and the particulate filter. The combined offgas condensate, and the 5% HNO₃/10% H₂O₂ impinger catches comprised the MMT back-half composite. The train's fourth impinger was used to separate the components of the train that contained 4% KMnO₄/10% H₂SO₄ from the peroxide contained in the front impingers. The fourth impinger was left empty during set-up. Its contents at the completion of a run and 0.1N HNO₃ collection rinses were only analyzed for mercury. The 4% KMnO₄/10% H₂SO₄ solution is used to trap elemental mercury (Hg). Thus, a composite sample was prepared from these impingers for the analysis of mercury, only. The internal surfaces of the backhalf impinger glassware received a final deionized (D.I.) water rinse during the train sample collections. These rinsates were collected and added to the appropriate impinger sample and included in the back-half composites. A final rinse of the potassium permanganate impingers was conducted with 8N HCl, and was collected as a separate sample for mercury analysis.

The sample collection and analysis are outlined in the STL final report. Sample fraction and run totals are listed in Appendix A. The run totals (in μg) are the sum of results for the front half and backhalf composite samples, and in the case of mercury, include the permanganate/sulfuric impinger composite totals. Results for the blank trains were not used to correct train totals as allowed by Method 0060 guidance.

5.3.3 Metals Data Quality Assessment

Samples were shipped using overnight delivery service to the laboratory. All Method 0060 train samples that were collected during the offgas sampling program were received at the laboratory in good condition. No losses of samples due to breakage or loss of shipment occurred. Samples derived from the Method 0060 trains are not required to be refrigerated after sample collection. All of the run fractions were processed and analyzed by STL in the time requirements specified in the QAPjP.

The data quality indicators of the sampling and analytical processes for the Method 0060 train samples indicate that the metals data collected from these samples represent acceptable characterization of the offgas emissions. Sufficient data has been collected to allow accuracy and precision to be measured for these parameters. Accuracy has been measured by analyzing LCS, post digestion spikes (PDS), and a limited set of matrix spikes. Precision was measured by the preparation and analysis of laboratory control sample duplicates. The data quality indicators present sufficient evidence that the data are of acceptable quality and are usable for the NWCF ETS offgas emissions inventory.

5.3.3.1 Metals Trains Reagent and Blank Data Assessment

Laboratory method blanks were prepared and analyzed in support of the data. Review of the laboratory method blank data indicates that the laboratory did not appear to introduce significant fugitive contamination to the samples.

Reagent blanks were collected in the field and processed to assess the inherent metallic analyte background in the media being used for sampling. A representative front-half composite reagent blank (a quartz fiber particulate filter and 120 mL 0.1 N HNO₃ rinse reagent), a representative back-half reagent blank (175 mL of the 5% HNO₃/10% H₂O₂ impinger solution), and a sample of the INTEC-supplied deionized water (210 mL) were collected and analyzed for the project target metallic analytes including mercury. Portions of the 4% KMnO₄/10% H₂SO₄ impinger solution, and the 8N HCl rinse solution were collected and analyzed for mercury. Aluminum and selenium were detected in the front-half composite reagent blank at levels that were above the laboratory RL. The amounts of aluminum, antimony, barium, nickel, selenium, and zinc indicate that the reagent may have contributed to the offgas sampling train front-half results. Other metals were detected at relatively insignificant amounts. The back-half reagent blank exhibits manganese and zinc above the laboratory RL. The levels of aluminum, barium, chromium, nickel, lead, manganese, selenium, and zinc indicate that the reagent may have contributed to the offgas sampling train back-half fraction results. The INTEC deionized water did not exhibit significant levels of any metals, although aluminum was found at 5.2 μ g.

The blank train samples exhibit similar results as those obtained for the reagent blanks, with two exceptions. Manganese was found in the blank train back-half composite sample at a level (3700 μ g) that far exceeded the offgas sample results. This occurrence can be traced to contamination of the back-half composite sample by KMnO₄ reagent. Zinc was found at a level of 34 μ g. This amount is roughly an order of magnitude higher that the reagent blank sample, and similar to the offgas sampling train results.

5.3.3.2 Method 0060 Train Accuracy and Precision Assessment

The quality control procedures that were implemented during the analyses of these samples for the purposes of assessing the general accuracy and precision of the analytical processes included the analysis of LCSs, LCSDs, PDS, and MS/MSD samples. Laboratory control samples test the accuracy and precision of the laboratory processes independent of stack gas matrix effects. The quantitative recovery of PDSs provides a second indicator of accuracy for the metals analysis for matrices (e.g., the front-half and back-half samples) from which matrix spikes cannot be prepared without affecting detection limits.

These spikes act as "internal standards" and signal when problems are encountered with the digestate matrix. When acceptable quantitative recoveries are observed for a PDS, the sample introduction onto the ICP is considered to be taking place correctly and the instrument has quantified the analytes present in the digestate correctly. Low recoveries typically indicate that viscosity or matrix interference effects may have been encountered. Matrix spikes (post sampling) of mercury were applied to the four back-half fraction samples. Accurate and precise recovery of the spiked mercury indicates that the entire analytical process, including preparation, is in control.

Matrix spikes of the ICP metals were not performed for the back-half composite sample matrix because this process would raise detection levels while adequate quality control information can be otherwise obtained. In terms of compliance, SW-846 Method 0060 does not require matrix spike recovery information for the evaluation of metals train samples, while SW-846 Method 6010B requires them to be performed for each sample batch or sample delivery group (SDG). The reasoning behind the lack of matrix spike requirements in the Method 0060 relates to the difficulty of dividing a front-half train portion, which contains the particulate filter, into three equal portions of the PM sample. Dividing the filter is a precarious operation. Particulate matter may not be evenly distributed on the filter, and cutting the filter to obtain equal portions of particulate material on each portion of the filter is difficult to execute. Analysis of MS/MSD samples for the front-half composite sample in not technically advisable. Particulate matter is the fraction of the captured stack gas sample that contributes typically the greatest level of metals to the Method 0060 samples.

Post digestion spikes were allowed in the QAPjP as an alternative QC measurement to replace MS/MSDs for both the front half and the back half train fractions. Post digestion spikes give an adequate demonstration of recovery for these samples, and are allowed by quality procedures sections of SW-846 methods for flame atomic absorption and graphite furnace atomic absorption. When coupled with laboratory control samples, and laboratory control sample duplicates, the quality of Method 0060 train sample analysis can be completely evaluated.

The LCS and PSDs corresponding to the front-half composite samples exhibited acceptable recoveries for all target metals. The recoveries of the metals, were within the target recovery range of 75% to 125%, with the exception of manganese and mercury. Mercury recoveries were high for Run 1, Run 2, Run 4 and the Final Acetone and Nitric Acid Probe Rinse. Manganese exhibited a low recovery only for Run 4.

The back-half sample fractions were also supported by laboratory control sample analysis and post digestion spike analysis. Post digestion spikes were analyzed for the back-half samples from Runs 1 and 2. The laboratory control sample results were accurate and reproducible, and indicate that the analytical processes were in control. All of the post digestion spike results were acceptable, but the mercury results have little meaning because the native levels of mercury in the samples were very high relative to the spike levels. Matrix spikes of the Run 1 back-half fractions for mercury of the impinger number 4 contents, 4% KMnO₄/10% H₂SO₄ impinger contents, and the 8N HCl rinse fractions were successful. Matrix spike results for the back-half composite sample for Run 1 could not be calculated because the native level of mercury was too high, relative to the spike level.

In general, the metals laboratory control sample, post digestion spike, and matrix spike recoveries indicate acceptable performance and provide a strong indication that the analytical processes used were in control. A review of the calculated RPDs (presented in the final STL data package and archived for this project), obtained from the analysis of LCS, indicates that these analytical processes are highly reproducible.

The data were reviewed for evidence of interelement interference because ICP (AES) analysis is subject to interelement interference from "high" levels of a few analytes. Aluminum (Al) is the only element present in the NWCF ETS samples that is in a sufficiently high concentration to be considered an interfering influence on the results for target analytes. The aluminum concentration for the Run 3 front-half composite sample is a potential interferent that could increase the results for vanadium. There is no effect, because the result for vanadium for this sample was non-detectable.

5.4 Particulate Matter and Acid Gases

The standard EPA Method 0050 HCl/Cl₂/Particulate Train (SW-846 Method 0050) configuration was used to collect samples from the NWCF ETS offgas for the assessment of PM and acid gas vapors. An offgas sample having a nominal volume of 3.0 dscm was isokinetically collected over 3-4 hours during each sampling run. A blank train and applicable reagent blanks were collected to support the QA/QC requirements specified in the QAPjP.

A final probe rinse sample was collected after the test runs for particulate analysis. The glass-lined sampling probe could not routinely be removed from the offgas sampling manifold for rinsing after each run for safty reasons as previously discussed. Instead, the front-half acetone rinse samples for particulate were limited to accessible tubing, filter housing elements and other connecting glassware that were installed outside the manifold and probe assembly. The glass-lined probe was only removed from the manifold after all offgas sampling trains were collected. An acetone probe rinse sample of the glass-lined probe was collected after the test runs to assess the maximum amount of particulate materials that adhered to the inside of the probe during testing. The probes were rinsed three times with acetone, and the samples were submitted for particulate analysis.

5.4.1 Acid Gas Target analytes

The target analytes for this method are hydrogen chloride (HCl), chlorine (Cl₂), hydrogen fluoride (HF), nitrate (NO₃-), nitrite (NO₂-), and PM.

5.4.2 Analysis of PM and Acid Gases

The particulate samples collected included two fractions: (1) an acetone rinse of the probe and filter housing assembly, and (2) a particulate filter. Composite samples containing the contents of the first, second, and third impingers of the train were collected for HCl, HF, HNO₃, and HNO₂ analysis. The first impinger was empty at the beginning of the sampling run and served as a moisture knockout impinger. The second and third impingers were each initially charged with 100 mL of 0.1N H₂SO₄. These acidic impingers allowed for the dissociation and collection of HCl, HF, HNO₃, and HNO₂ from the offgas. A composite sample of the fourth and fifth impinger contents, which were each initially charged with 100 mL of 0.1N NaOH, were analyzed for Cl⁻, F⁻, NO₃⁻, and NO₂⁻. Chlorine gas (Cl₂) present in the offgas does not freely dissociate in the acidic H₂SO₄ medium; therefore, it passes through the first three impingers as an unreacted gas and reacts when it comes in contact with the NaOH solution as follows:

$$Cl_2 + 2OH^- \xrightarrow{NaOH} 2OCl^- + Cl^- + H_2O$$

At STL, the particulate filter samples were dried at 105°C and the acetone probe rinse samples were evaporated to dryness at room temperature. Both fractions were stored in a dessicator for 24 hours, then analyzed gravimetrically. Replicate weights were obtained until constant weights were achieved.

The difference between pre-sampling and post-drying gravimetric measurements were then calculated for each sample.

The 0.1N H₂SO₄ and 0.1N NaOH impinger samples were analyzed by ion chromatography using SW-846 Methods 9056 and 9057, as implemented by STL Analytical Laboratories Method, KNOX-WC-0005, *Anion Analysis by Ion Chromatography*, KNOX-WC-0005 (April 20,1999). The calibration range extended from 0.5 mg/L to 20 mg/L for all of the target anions. In order to quantify all of the target anions, several analyses were conducted at different dilution factors that ranged from 1 to 10. Dilution was performed both to bring the sample concentration within the instrument calibration range and to overcome matrix effects. The optimum value was chosen for reporting, with the lowest achieved detection limits reported in each case. The final data for each anion were based on analyses that were within the calibration range of the instrument.

The tabulated data summaries provided in the STL Final Report are listed in Appendix A. Each anion result is reduced to a "Risk Result" by selecting the default value for use in risk assessment calculations in accordance with project guidelines.

5.4.3 PM and Acid Gas Data Quality Assessment

Samples were shipped using Federal Express overnight delivery service to the laboratory. All Method 0050 train samples that were collected during the offgas sampling program were received at the laboratory in good condition. No losses of samples due to breakage or loss of shipment occurred. All Method 0050 train fractions were processed on schedule, as required by the QAPjP, and analytical results were obtained for all of the expected analyses.

Sufficient data have been collected and reviewed to address the relative precision and accuracy of the particulate and anion target analyte measurements. The data quality indicators present sufficient evidence that the data are of acceptable quality and are usable for the NWCF ETS emissions inventory.

5.4.3.1 Method 0050 Train Reagent Blank Assessment

A particulate filter, the 0.1N H₂SO₄ and 1N NaOH reagents, and a sample of the INTEC supplied deionized (D.I.) water were collected during sample collection and were processed as reagent blanks in order to assess the presence of background analytes. These reagent blank samples were analyzed for the same parameters as the actual train samples, and showed minimal background levels of the target analytes. Chloride was detected in the 0.1N H₂SO₄ reagent blank at a level that was below the RL for the laboratory. Nitrate was detected in the 0.1 N NaOH reagent blank and the D.I. water reagent blank at low levels that had no impact on the final results. The sample results have been presented without blank corrections with the exception of tare subtraction required for the particulate analysis. All sample calculations of offgas concentrations were performed without blank or background correction.

5.4.3.2 Method 0050 Blank Train Assessment

A set of blank train samples was collected in conjunction with the four Method 0050 runs. The blank train samples exhibited similar results as the reagent blanks. There was no evidence of significant contributions to anion contributions in the sample results as a consequence of the sample train component preparation or handling.

5.4.3.3 Laboratory Control Sample and Matrix Spike Sample Assessment

Laboratory control sample percent recoveries indicate that the analytical process was in control. However, there were reduced recoveries of chloride in the matrix spike samples, due to apparent matrix effects. The other anions exhibit percent recoveries that are within target acceptance limits. Overall recovery of all of the target anions was sufficient to indicate that the data are useful for their intended purposes. The RPD results for both the LCS and the matrix spike samples indicate that a high level of precision is represented by this data.

6. PROCESS STREAM CHARACTERIZATION RESULTS

During the NWCF ETS off-gas emissions sampling activities, the NWCF ETS was being used to process a blend of two parts by volume of solution from INTEC Tank Farm Facility (TFF) vessel WM-184 and one part by volume of solution from INTEC TFF vessel WM-181. The campaign to process this blend was initiated on May 4, 2001 and continued through December 2001. At the same time the off-gas sampling was being performed, RCRA-quality liquid samples of NWCF ETS process streams were collected for analysis. These samples were collected under the protocols and QA/QC specified in sampling and analysis PLN-613 and PLN-407, the ALD QAPjP for environmental samples. These samples consisted of one each of the blended feed, condensed overheads, and concentrated bottoms. In addition, process samples of the feed were analyzed prior to initiation of processing the blend in the NWCF ETS to ensure that the chemistry of the feed solution was compatible with process equipment. Finally, samples of the condensed overheads and the concentrated bottoms from the first several batches processed were analyzed to ensure that the chemistry of those streams was compatible with down-stream process equipment. It should be noted that the non-RCRA samples were not analyzed per RCRA protocol; therefore limited QA/QC controls were evaluated.

These data obtained for the process streams may be used for component material balances around the NWCF ETS and are included in this report to provide a complete picture of the NWCF ETS and to provide a convenient location to obtain the data for subsequent system analyses. It should be noted that some limitations exist with this data. First, the INTEC Analytical Laboratory Department (ALD) that analyzed these samples has a more limited standard target analyte list for volatile organic compounds and semi-volatile organic compounds than the contract laboratory that analyzed the off-gas samples. The INTEC ALD TAL of volatile and semi-volatile organic compounds are contained in Appendix C. Second, some of the process samples (especially those taken to ensure compatibility with the NWCF ETS and down-stream equipment) were not taken at the exact same time as the off-gas samples. However, it is reasonable to assume that the process control system provides consistent batching of the feed streams and consistent control of the process variables. Third, the samples taken prior to initiation of the blend campaign, as well as those taken during processing the first several batches were only analyzed for a limited number of analytes. Since the purpose of these samples was to ensure compatibility between the solution chemistry and the process equipment, only those analytes that might challenge the envelopes of associated safety bases were targeted.

The results of the inorganic analyses of the feed samples are contained in Table 13, those results for the concentrated bottoms are contained in Table 14, and those for the condensed overheads are contained in Table 15. Organic compound analyses were only performed on one sample from each of the three streams; therefore, the organic analysis results for all three streams are contained in Tables 16 and 17. The INTEC ALD analytical reports for these samples are contained in Appendix C.

	. :	
:	픚	J
	samt	
	ous	
	11551	
	s en	
ر	I-ga	3
,	5 01	
į	I	
1	Ę	
A TAY 7	S Z	
	uring)
	g	
	processed	
	streams	
	teed	
۲	ō	
	VSes	
	ana	
	ranic	
-	Inorg	,
,	<u>.</u>	
_	<u>د</u>	
-	ap	
6	_	

Ambier Local: ONDOING DISCOUNT AND	000074	200100	00100415 0010	100	27	0104103	0104135	0104147	0105067	0105063	0105112	0106071
	177000	7700100			/010	5010	6104123	711000	2000010	20000	7110010	1700010
Analysis, units:												
Sp. G.	1.1602	1.1549		1.1	1.1579	1.2220	1.2201	1.2409	1.1976			
Acid, N	1.564	1.596		-	1.633	1.842	1.823	1.854	1.781			1.711
Al, M	0.2209	0.2189		0.2	0.2127	0.526	0.537	0.521	0.451			0.42448
Sb, M												<0.000002
As, M												0.00000447
Ba, M												0.0000290
Ве, М												0.0000105
В, М	0.0130	0.0134		0.0	0.0137	0.0076	0.0076	0.0082	0.00971			
Cd, <i>M</i>	0.00411	0.00426		0.0	0.00420	<0.000948	<0.000948	<0.000948	0.00156			0.00156
Ca, <i>M</i>	0.04376	0.04526		0.0	0.04684	0.01618	0.0163	0.0169	0.02528			
Cl, M	0.0179	0.0117		0.0	0.0117	0.0276	0.0278	0.02835	0.0226			
Ct, <i>M</i>	0.00275	0.00252		0.0	0.00284	0.00169	0.0017	0.0018	0.00194			0.00196
Co, M												0.00000283
Cu, M												0.0004244
F, M	0.08485	0.1365		0.8	0.8122	0.0291	0.0258	0.0260	0.0500			0.04351
Fe, M	0.0113	0.0121		0.0	0.0129	0.01422	0.0138	0.0149	0.0133			
Pb, M												0.0005369
Mn, <i>M</i>												0.007841
Нg, М	0.00198	0.00102		0.00	0.000603	0.000748	0.000633	0.000678	0.000613			0.000743
Ni, M												0.00113
NO ₃ , M	2.839	3.111		ž.	3.222	3.91	3.89	3.96	3.279			
PO4, M												
K, M	0.821	0.124		0	0.127	0.0895	0.0880	0.0880	0.0987			
Se, M												<0.000003
Ag, M												0.0000011
Na, M	5.70	0.848		0	0.853	1.32	1.31	1.36	1.17			
SO_4, M	0.0316	0.0343		0.0	0.0385	0.0162	0.0087	0.0106	0.0288			
TI, M												<0.000001
U, M		0.00032		0.0	0.00031	0.000185	0.000184	0.000168	0.000206			0.000209
								•				

	0
	0105063
	0105062
mpling.	0104142
nissions sa	0104125
off-gas en	0104103
during NWCF ETS off-gas emissions sampling	0010167
during N	0010164
s processe	00100415
ed strean	0010022
lyses of fe	0009274
organic analyses	0009272
Table 13. Inorganie	Analysis Log #:

	`			0		0 1		0 -1-				
Analysis Log #: 0009272	0009274	0010022	00100415	0010164	0010167	0104103	0104125	0104142	0105062	0105063	0105112	0106071
Analysis, units:												
V, M												0.000012
Zn, M												0.0006313
Zr, M	0.0053	0.0054			0.0053	<0.00278	<0.00278	<0.00278	<0.00279			
H-3, mCi/L 0.0158			0.0154	0.0126						0.0223	0.0219	
Co-57. mCi/L						0.01171						
Co-60, mCi/L	0.0705	0.0649			0.0627	0.01357	0.01710	0.01697				
Sr (total), mCi/L 20.4			24.28	20.69						97.9	16.7	
Cs-134, mCi/L	0.0705	0.0635			0.0646		0.00546	0.00555	0.0212			
Cs-137, mCi/L	25.8	26.1			26.2	12.8	14.24	14.38	19.4			
Eu-154, mCi/L	0.214	0.224			0.197	0.0299	0.0319	0.0324				
Eu-155, mCi/L	0.0484	0.0451			0.0451							
Nb-94, mCi/L	0.00316	0.00308			0.00373				0.00209			
Zr-95, mCi/L	0.0125	0.0115			0.0121				0.00477			
Sb-125, mCi/L					0.0368			0.130				
Am-241, mCi/L												
TIC,' µg/mL												<119
UDS, g/L												0.619
1. Total inorganic carbon.												

Table 14. Inorganic ana	lyses of bottoms	streams during	NWCF ETS off-	gas emissions
Analysis Log #:	0105106	0106146	0106214	0106233
Analysis, units:				
Sp. G.	1.0747	1.3564		1.3036
Acid, N	2.559	2.868	1.741	2.830
Al, <i>M</i>	0.518	0.859	0.31256	0.711
Sb, <i>M</i>			0.0000128	
As, M			< 0.000008	
Ba, <i>M</i>			0.0000216	
Be, <i>M</i>			0.0000067	
B, M				
Cd, <i>M</i>			0.00131	
Ca, M				
Cl, <i>M</i>	0.0226	0.02866		0.03732
Cr, <i>M</i>	0.0220	***	0.001674	
Co, M			0.0000241	
Cu, <i>M</i>			0.0003003	
	0.0466	0.0900	0.052775	0.0684
F, M	0.0400	0.0900	0.052775	0.0004
Fe, M			0.0004164	
Pb, <i>M</i>			0.006174	
Mn, M			0.000174	
Hg, M				
Ni, M	4.02	5.07	0.0009426	7 22
NO_3, M	4.03	5.27		7.22
PO_4, M	0.003871	0.01399		0.01382
K, <i>M</i>	0.0159	0.129	-0.000010	0.154
Se, M			< 0.000012	
Ag, M			< 0.000004	1.01
Na, <i>M</i>	0.505	1.56		1.91
SO_4 , M				
Tl, <i>M</i>			< 0.000004	
U, <i>M</i>	0.000247	0.000311	0.000261	0.0004357
V, <i>M</i>			0.000011	
Zn, M		•	0.000494	
Zr, M				
H-3, mCi/L	0.0108	0.0151		
Co-57, mCi/L				
Co-60, mCi/L	0.0352			
Sr (total), mCi/L				
Cs-134, mCi/L	0.0236			
Cs-137, mCi/L	21.2			
Eu-154, mCi/L	0.0904			
Eu-155, mCi/L				
Nb-94, mCi/L				
Zr-95, mCi/L	0.00528			
Sb-125, mCi/L				
Am-241, mCi/L				
TIC, µg/mL			<119	
UDS, g/L	5.3	1.187	1.288	0.725
1. Total inorganic carbon.	5.5	. 1.407		2 5
1. Total morganic carbon.				

Table 1.5 Inorganic analyses of condensate streams mirror NWCF ETS off-pase missions Canalysis Log #: 0105061 0105073 0105087 0105092 0106145 0106221 0106221 0106241 0106221 0106241 01	Table 15 Inor	ganic analys	ses of conde	nsate strean	ns during N	WCF ETS o	off-gas emis	sions
Sp. G.	Analysis Log #:			0105087	0105092	0106145	0106221	0106241
Acid, N 0.467 0.450 0.476 0.480 0.498 0.514 0.471 Al, M 0.00108 <0.0008 <0.00042 <0.00075 <0.00042 0.000002 <0.0000004 Sb, M 0.00000004 <0.00000004 <0.00000004 <0.00000006 <0.00000004 B, M 0.00 0.004928 0.00485 0.005156 0.00525 0.005602 0.0000002 Cr, M 0.00 0.004928 0.00485 0.005156 0.00525 0.005602 0.0000002 Cr, M 0.00 0.00037 <0.00037 <0.00037 <0.00037 <0.00018 0.00018 0.000191 <0.000002 Fe, M 0.00 0.0000189 0.000186 0.000115 0.000024 0.0000195 0.0000163 Mi, M 0.00011 0.4198 0.02049 0.4233 0.4393 0.4007 0.0000024 Ma, M 0.000153 0.000120 <0.000014 <0.0000014 <0.0000002 <0.0000001 <0.0000014 <0.0000001 <0.0000001		1.0127	1.0121	1.0131	1.0131	1.0138		1.0130
A1, M 0.00108 <0.0008							0.514	
So, M	•							
As, M Ba, M Ba, M Cd, M Cd, M Cd, M Cl, M		0.00108	<0.0008	<0.00042	<0.00075	VO.00042		-0.00012
Ba, M Be, M Be, M Cd, M Coll								
Be, M B, M Cd, M								
B, M Cd, M Cd, M Cd, M Cl, M O,004928 0.00485 0.005156 0.00525 0.005602 0.00000052 0.00000052 0.00000052 0.0000003 F, M 0,0000003 F, M 0,0000029 0.0000180 0.0000180 0.0000180 0.0000180 0.0000024 0.0000004 0.0000003 F, M 0,00000004 0.0000003 F, M 0,00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000004 0.00000005 0.0000163 0.00000055 0.000000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0000055 0.0								
Cd, M Ca, M Co.00000004 Co.00000004 Co.000000052 Co.000000052 Co.000000052 Co.000000052 Co.000000052 Co.000000002 Co.0000000002 Co.000000002 Co.000000002 Co.000000002 Co.000000003 Co.00000003 Co.0000003 Co.0000003 Co.0000003 Co.0000003 Co.0000003 Co.0000003 Co.000003 Co.000003 Co.0000003 Co.0000004 Co.0000002 Co.000002							<0.0000001	
Ca, M							-0.00000004	
Cl. M	,						<0.00000004	
Cr, M 0.00000052 0.00000052 0.00000052 0.00000002 0.00000002 0.00000000 0.00000000 0.000018 0.000018 0.000018 0.000018 0.000018 0.000018 0.00000024 0.00000002 0.0000002 0.0000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.000000014 0.00000014 <						0.005600		0.00530
Co, M Cu, M	C1, <i>M</i>	0.004928	0.00485	0.005156	0.00525	0.005602		0.00539
Cu, M <.0.000003 <0.0000003 <0.0000003 <0.0001791 <0.00018 F, M <0.000041	Cr, <i>M</i>							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co, <i>M</i>							
Fe, M Pb, M Mn, M Hg, M 0.0000229 0.0000189 0.0000186 0.0000115 0.0000024 0.00001969 0.0000163 0.00000055 Ni, M NO3, M 0.4011 0.4198 0.02049 0.4233 0.4393 0.4007 PO4, M K, M Se, M Ag, M NSA, M SO4, M CO, 0000153 0.000120 0.000012 0.0000012 0.0000002 Ni, M V, M V, M ZI, M H-3, mCi/L Co-57, mCi/L Cs-134, mCi/L Cs-154, mCi/L Cs-155, mCi/L Cs-156, mCi/L Cs-157, mCi/L Cs-158, mCi/L Cs-158, mCi/L Cs-158, mCi/L Cs-159, mCi/L Cs-159, mCi/L Cs-159, mCi/L Cs-150, mCi/L	Cu, <i>M</i>							
Pb, M Mn, M Hg, M NO₃, M 0.0000229 0.0000189 0.0000186 0.0000115 0.0000274 0.00001969 0.00001969 0.0000163 0.00000055 NO₃, M PO₄, M K, M Se, M Ag, M Na, M SO₄, M Q, M Na, M 0.4011 0.4198 0.02049 0.4233 0.4393 0.4007 Ye, M K, M Se, M Na, M SO₄, M Na, M SO₄, M Q, M Q, M Q, M Q, M Zn, M H-3, mCi/L Co-57, mCi/L Co-57, mCi/L Co-57, mCi/L Cs-134, mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Nb-94, mCi/L Zr-95, mCi/L Nb-94,	F, <i>M</i>	< 0.00041	< 0.00037	< 0.00037	< 0.00037	< 0.00018	0.0001791	< 0.00018
Min, M 0.00000224 0.00000024 0.00000024 0.00000024 0.00001969 0.0000163 0.0000115 0.00000174 0.00001969 0.0000163 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.00000055 0.0000005 0.0000005 0.0000005 0.0000005 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.000	Fe, <i>M</i>							
Hg, M	Pb, <i>M</i>						< 0.0000004	
Hg, M Ni, M NO ₃ , M PO ₄ , M K, M Se, M Ag, M Na, M SO ₄ , M V, M U, M V, M Zr, M H-3, mCi/L Co-60, mCi/L Sr (total), mCi/L Cs-134, mCi/L Cs-134, mCi/L Cs-135, mCi/L Cs-195, mCi/L Nb-94, mCi/L Zr-95, mCi/L Am-241, mCi/L Ch-60, mCi/L Cr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L Ch-60, mCi/L Cr-95, mCi/L Cr-95, mCi/L Am-241, mCi/L Cr-95, mCi/L Ch-60, mCi/L Cr-95, mCi/L Cr-95							0.00000024	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0000229	0.0000189	0.0000186	0.0000115	0.0000274	0.00001969	0.0000163
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.00000055	
PO ₄ , <i>M</i> K, <i>M</i> Se, <i>M</i> Ag, <i>M</i> Na, <i>M</i> SO ₄ , <i>M</i> U, <i>M</i> O.000153 O.000120 O.0000014 O.0000014 O.0000014 O.0000014 O.0000014 O.0000014 O.00000014 O.00000014 O.00000014 O.00000015 O.00000016 O.000000016 O.000000016 O.000000016 O.000000000000000000000000000000000000		0.4011	0.4198	0.02049	0.4233	0.4393		0.4007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1011	0.1170	0.020.5	31,122			
Se, M Ag, M < 0.0000007 < 0.0000002 Na, M SO4, M 0.000153 0.000120 <0.00003								
Ag, M Na, M SO ₄ , M O.000153 O.000120 O.00003 O.000112 O.000083 O.000002 TI, M U, M V, M Zn, M H-3, mCi/L Co-57, mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Am-241, mCi/L Am-241, mCi/L TIC, ¹ μg/mL UDS, g/L None visible none visib	,						< 0.0000007	
Na, M SO ₄ , M O.000153 O.000120 O.000003 O.000112 O.000083 O.000002 V, M V, M Zr, M H-3, mCi/L Co-57, mCi/L Sr (total), mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Nb-94, mCi/L Zr-95, mCi/L Am-241, mCi/L Cm-125, mCi/L Am-241, mCi/L Cm-125, mCi/L Cm-125, mCi/L Nb-94, mCi/L Cm-125, mCi/L Nb-125, mCi/L Nb-12								
SO ₄ , M							-0.0000002	
TI, <i>M</i> U, <i>M</i> V, <i>M</i> Zn, <i>M</i> H-3, mCi/L Co-57, mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Nb-94, mCi/L Sb-125, mCi/L Nb-94, mCi/L TIC, ¹ µg/mL UDS, g/L none visible 0.0000002 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.000000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.00000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.000000014 <0.00000000000000000000000000000000000		0.000152	0.000120	<0.00003	0.000112	0.000083		<0.000059
U, <i>M</i>		0.000133	0.000120	<0.00003	0.000112	0.000003	<0.0000002	<0.000055
V, M		-0.0000014	-0.0000014	<0.0000014	<0.0000014	<0.0000014		<0.0000014
Zn, M Zr, M H-3, mCi/L Co-57, mCi/L Co-60, mCi/L Sr (total), mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible 0.000000081 0.000000081 0.000000081 0.000000081 0.000000081 0.000000081		<0.0000014	<0.0000014	<0.0000014	<0.0000014	<0.0000014		<0.0000014
Zr, M H-3, mCi/L Co-57, mCi/L Co-60, mCi/L Sr (total), mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible none visible none visible					•			
H-3, mCi/L Co-57, mCi/L Co-60, mCi/L Sr (total), mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible none visible none visible none visible							0.00000081	
Co-57, mCi/L Co-60, mCi/L Sr (total), mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible none visible none visible none visible								
Co-60, mCi/L Sr (total), mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible none visible none visible none visible					,			
Sr (total), mCi/L Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible none visible none visible none visible								
Cs-134, mCi/L Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible none visible none visible none visible								
Cs-137, mCi/L Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\) µg/mL UDS, g/L none visible none visible none visible none visible none visible								
Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, 1 µg/mL UDS, g/L none visible none visible none visible none visible none visible none visible	Cs-134, mCi/L							
Eu-154, mCi/L Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, 1 µg/mL UDS, g/L none visible none visible none visible none visible none visible none visible	Cs-137, mCi/L							
Eu-155, mCi/L Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\)\(\text{µg/mL}\) UDS, \(\text{g/L}\) none visible none visible none visible none visible \(^2\) 0.0 none visible								
Nb-94, mCi/L Zr-95, mCi/L Sb-125, mCi/L								
Zr-95, mCi/L Sb-125, mCi/L Am-241, mCi/L $ \begin{array}{ccccccccccccccccccccccccccccccccccc$								
Sb-125, mCi/L Am-241, mCi/L TIC, \(^1\pu\g/\text{mL}\) UDS, g/L none visible none visible none visible none visible none visible none visible								
Am-241, mCi/L TIC, $^{1}\mu g/mL$ <								
TIC, μg/mL								
UDS, g/L none visible none visible none visible none visible none visible 0.0 none visible							<23.8	
020, 82		none visible	none visible	none visible	none visible	none visible		none visible
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Table 16. VOC analyses of NV Stream	Blended I		Botton		Conden	sate
	Result	LQ	Result	LQ	Result	LQ
Analyte, units:						
TOC, μg/mL	608.462		754.99		147.853	
Chloromethane, µg/L	<10	U M	<10	U	<10	U
Vinyl Chloride, μg/L	<10	U	<10	U	<10	U
Bromomethane, μg/L	4	J	37	ВМ	160	EBM
Chloroethane, µg/L	<10	U	<10	U	<10	U
Trichlorofluoromethane, µg/L	<10	U	<10	U	<10	U
1,1-Dichloroethene, μg/L	<10	U	<10	U	<10	U
1,1,2-Trichloro-1,2,2-	<10	U	<10	U	<10	U
Carbon disulfide, µg/L	<10	U	<10	U	<10	U
Acetone, μg/L	9	J	<20	UΖ	32	Y
Methylene chloride	<10	U	<20	UΖ	<20	UΖ
Trans-1,2-dichloroethene, μg/L	<10	U	<10	U	<10	U
1,1-Dichloroethane, µg/L	<10	U	<10	U	<10	U
Cis-1,2-dichloroethene, µg/L	<10	U	<10	U	<10	U
2-Butanone, μg/L	<10	U	<10	U	<10	U
Chloroform, µg/L	<10	U	<10	U	<10	U
1,1,1-Trichloroethane, μg/L	<10	U	<10	U	<10	U
Carbon tetrachloride, µg/L	<10	U	<10	U	<10	U
Benzene, µg/L	<10	Ū	<10	U	<10	U
1,2-Dichloroethane, µg/L	<10	UM	<10	Ü	<10	U
Trichloroethene, μg/L	<10	U	<10	Ü	<10	U
1,2-Dichloropropane, µg/L	<10	Ü	<10	Ū	<10	U
Bromodichloromethane, µg/L	<10	Ü	<10	Ü	<10	Ū
Cis-1,3-dichloropropene, µg/L	<10	Ŭ	<10	Ū	<10	U
4-Methyl-2-pentanone, μg/L	<10	Ü	<10	Ŭ	<10	Ū
Toluene, μg/L	<10	Ü	<10	Ü	<10	Ü
Trans-1,3-dichloropropene, µg/L	<10	U	<10	Ŭ	<10	Ü
1,1,2-Trichloroethane, µg/L	<10	U	<10	U	<10	U
Tetrachloroethene, μg/L	<10	U	<10	Ü	<10	Ŭ
2-Hexanone, µg/L	<10	U	<10	U	<10	Ū
Dibromochloromethane, μg/L	<10	U	<10	U	<10	U
Chlorobenzene, µg/L	<10	U	<10	U	<10	Ü
Ethylbenzene, µg/L	<10	U	<10	U	<10	U
M-xylene and p-xylene, μg/L	<20	U	<20	U	<20	U
VI-xylene and p-xylene, μg/L O-xylene, μg/L	<10	U	<10	U	<10	U
	<10	U	<10	U	<10	U
Styrene, µg/L	<10	U	<10	U	<10	U
Bromoform, µg/L		U	<10 <10	U	<10	U
1,1,2,2-Tetrachloroethane, µg/L	<10	U	<10	U	~10	U
Tentatively Identified Compounds:	1/10	1				
Unknowns, number LQ = lab qualifiers (see Appendix C for de	1/10	_ J				

Stream	Blende	Bottoms		Condensate		
Analysis Log #:	0106	071	01062	221	01062	14
	Result	LQ	Result	LQ	Result	LQ
Analyte, units:						
TOC, μg/mL	608.462		754.99		147.853	
N-Nitrosodimethylamine	<20	U M	36		42	
Pyridine	<20	U	<20	U	<20	U
Phenol	<20	U	<20	U	<20	U
bis(2-Chloroethyl)ether	<20	U	<20	U	<20	U
2-Chlorophenol	<20	U	<20	U	<20	U
1,3-Dichlorobenzene	<20	U	<20	U	<20	U
1,4-Dichlorobenzene	<20	U	<20	U	<20	U
1,2-Dichlorobenzene	<20	U	<20	U	<20	U
2-Methylphenol	<20	U	<20	U	<20	U
bis(2-Chloroisopropyl)ether	<20	U	<20	U	<20	U
3 & 4-Methylphenol	<20	U	<20	U	<20	U
N-Nitroso-di-n-propylamine	<20	U	<20	U	<20	U
Hexachloroethane	<20	U	<20	U	<20	U
Nitrobenzene	<20	U M	<20	U	<20	U
Isophorone	<20	U	<20	U	<20	U
2-Nitrophenol	<20	U	<20	U	<20	U
2,4-Dimethylphenol	<20	U	<20	U	<20	U
ois(2-Chloroethoxy)methane)	<20	U	<20	U	<20	U
2,4-Dichlorophenol	<20	U	<20	U	<20	U
1,2,4-Trichlorobenzene	<20	U	<20	U	<20	U
Naphthalene	<20	U	<20	U	<20	U
4-Chloroaniline	<20	U	<20	U	<20	U
Hexachlorobutadiene	<20	U	<20	U	<20	U
4-Chloro-3-methylphenol	<20	U	<20	U	<20	U
2-Methylnaphthalene	<20	U	<20	U	<20	U
Hexachlorocyclopentadiene	<20	U	<20	U	<20	U
2,4,6-Trichlorophenol	<20	U	<20	U	<20	U
2,4,5-Trichlorophenol	<20	U	<20	U	<20	U
2-Chloronaphthalene	<20	U	<20	U	<20	U
2-Nitroaniline	<20	U	<20	U	<20	U
Dimethylphthalate	<20	U	<20	U	<20	U
2,6-Dinitrotoluene	<20	U	<20	U	<20	U
Acenaphthylene	<20	U	<20	U	<20	U
3-Nitroaniline	<20	U	<20	U	<20	U
Acenaphthene	<20	U	<20	U	<20	U

Table 17. SVOC analyses of NWCF ETS streams during NWCF ETS off-gas emissions Stream Blended Feed Bottoms Condensate 0106221 0106214 0106071 Analysis Log #: LQ Result LQ Result LQ Result Analyte, units: 110 M 420 D M H 44 M 2,4-Dinitrophenol 4-Nitrophenol U M <20 U <20 U M <20 Dibenzofuran U <20 U <20 U <20 2,4-Dinitrotoluene U U <20 U <20 <20 Diethylphthalate < 20 U M < 20 U M < 20 U M 4-Chlorophenyl-phenylether U <20 U <20 U <20 Fluorene U <20 U U <20 < 20 4-Nitroaniline U U <20 U <20 <20 4,6-Dinitro-2-methylphenol U M <20 U M <20 U M <20 N-Nitrosodiphenylamine <20 U <20 U <20 U U U Tri-n-butyl phosphate U U Azobenzene 4-Bromophenyl-phenylether U U U <20 < 20 <20 Hexachlorobenzene U U U <20 < 20 <20 Pentachlorophenol U <40 U <40 U <40 Phenanthrene U <20 U < 20 U <20 Anthracene U <20 U <20 U <20 Carbazole U U <20 U <20 <20 Di-n-butylphthalate U <20 U M <20 U M <20 Fluoranthene U <20 U <20 <20 U Pyrene U U <20 U <20 < 20 Butylbenzylphthalate U <20 U <20 U < 20 3,3'-Dichlorobenzidine <20 U <20 U M <20 U M Chrysene U <20 U <20 U <20 Benzo(a)anthracene U U U <20 <20 <20 bis(2-Ethylhexyl)phthalate <20 <20 U <140 U U Di-n-octylphthalate U U <20 < 20 U <20 Benzo(b)fluoranthene <20 U <20 U <20 U Benzo(k)fluoranthene U <20 U <20 U <20 Benzo(a)pyrene U <20 U <20 U <20 Indeno(1,2,3-cd)pyrene U <20 U <20 U <20 Dibenzo(a,h)anthracene <20 U <20 U <20 U Benzo(g,h,I)perylene U U <20 U <20 <20 Tentatively Identified Compounds: J 5/130 J Unknowns, number identified/conc. J 19/509 7/501 17 J Tri-n-butyl phosphate

LQ = lab qualifiers (see Appendix C for definitions)

7. PROCESS OPERATING CONDITIONS

The NWCF ETS is operated as described in Section 2. The evaporator is initially filled with fresh waste solution. The temperature in the evaporator flash column, prior to initiation of stream is usually between 50 and 60°C. Steam flow is ramped from 0 to 1730 lb/hr in 15 to 45 minutes and then maintained for eight to ten hours until the desired solution density is obtained. Approximately 2 to 3 hours is required for the column to reach a full boil at around 100°C. Fresh feed solution is added to the evaporator until near the end of the batch. The temperature increases 3-4° throughout the batch as the concentration increases to the target density.

Offgas sampling at the beginning of the evaporator run was synchronized with the initiation of steam to the evaporator. Approximately 3 hours was needed to collect the offgas samples, including the SMVOC runs. This provided a representative average of the emissions during the startup period. SMVOC samples were actually started 15-20 minutes prior to steam initiation in order to capture any burst of volatile organic emissions on the onset of solution heating. Sample collection at the end of the evaporator batches was coordinated with the ETS operators in order to sample during the final 3-4 hours of the evaporator batch.

Process parameter data were collected during the NWCF ETS emissions sampling by the NWCF Distributive Control System (DCS). A history of key process variables was collected using fifteen-minute average data. The data were then tabulated for the times when the sampling was taking place. Appendix D compiles the process parameters for the sixteen sample collection runs.

The evaporator operated within normal operating parameters throughout the period of sample collection. The feed batches had very similar densities and temperatures, indicating very similar compositions. The total flow from the NWCF (containing the NWCF ETS emissions) was essentially constant limiting variation due to deposition or re-entrainment.

During the collection of sample train 0060-STRT-02, sampling was interrupted for an emergency drill while the evaporator batch continued. Sampling was interrupted from 0850 to 0922 on June 6, 2001 until sampling personnel were notified that they could continue. During this time, the average temperature in the evaporator increased from 76.4 to 97.4 degrees.

8. DQO ASSESSMENT AND PROJECT SURVEILLANCE

Data quality objectives (DQOs) for the NWCF ETS offgas emissions project are defined in the quality assessment project plan (QAPjP, company document PLN-879). Sample collection in the field was coordinated by the Project Technical Leads (PTL) with independent surveillance performed by the Project Quality Assurance Officer (PQAO). The sample collection activities were monitored by the PTL and PQAO, thus ensuring that the sample collection activities were completed in accordance with the test plan and QAPjP and that the samples were maintained under proper custody and conditions at all times. All changes to the test plan required advance approval from the PTL and PQAO prior to being implemented during sample collection. A standard field change form was used to document the approvals for these changes.

The services of the INEEL Sample Management Office (SMO) were not enlisted to review the analytical data. This was previously completed on the NWCF Calciner offgas emissions inventory, but was not within the budget constraints of the current project. Therefore, a cursory review of the analytical data QA/QC requirements was completed by the PQAO and is provided in lieu of the Limitations and Validation (L&V) reports that are provided by the SMO on previous projects.

8.1 Documented Field Changes

The QAPjP allowed for in-field changes to requirements of the QAPjP and sampling protocols as long as such changes were approved per Section 13.1 of the QAPjP. Also allowed by the QAPjP were properly approved changes to the sampling checklists. Seven field change forms capturing 11 different requested variances from the QAPjP or standard protocol were approved.

8.1.1 VOC Sample Collection

Method 0031 for VOCs still requires the storage of Tenax® and Anasorb-747® tubes at less than 10°C after tube conditioning, during transport, and up to the time of tube usage in sampling. This is a typical protocol deviation among current laboratory service providers, since it is deemed unnecessary in conjunction with the common practice of sealing the resin tubes in air-tight containers and using a trip blank to identify potential fugitive contamination that may occur prior to use of the tubes in the field and during their return to the laboratory. Conditioned sample media availability, schedule slippage, and laboratory technical guidance were critical factors in the project field decision to waive this requirement via a field change once it was determined that the laboratory had not complied.

The method requirement that conditioned media tubes not be exposed to severe pressure variations during transport is satisfied amply by the multiple layers of containment used by the contract laboratory providing the sample tubes. Therefore, in this regard, no field change was applicable. It should also be noted that all of the Tenax® and Anasorb-747® tubes were cooled to 0-10°C immediately following sample collection.

The initial intent of the contract sampling team was to not preserve aqueous samples collected for VOCs (Method 0031) by acidification with 8N HCl to a measured pH of < 2. The BBWI Project Technical Lead and the PQAO pointed out that it would be preferable to perform this standard EPA preservation protocol on such aqueous samples and on associated reagent water blanks. A field change to the sampling checklist reflecting that guidance was approved and sampling team was so instructed.

Another field change was proposed and approved to require another pair of Tenax®/Anasorb-747® tubes be collected as a field blank for the second day of Method 0031 sampling. The project had already varied in the QAPjP from the standard method requirement for a field blank every two hours of sampling based on the expected sampling period and reviews of cost /benefit and technical applicability of this QC-related method requirement to sample train operations, as scheduled.

The last field change related to the 0031 sample trains and protocols was one to keep the flowrates at or below 0.5 Lpm rather than going with the standard EPA Method 0031 upper limit of 1 Lpm. This allowed four sets of tubes to be ran in the 0031 sampling trains over a typical sampling interval meeting or exceeding the method target sampling time of 2 hours. This is compliant with the intent of Section 1.8 of the standard EPA SMVOC method.

8.1.2 SVOC Sample Collection

One field change form was approved specific to the Method 010 trains for SVOCs. This change incorporated a final field dilution of the condensate fractions from these trains from just under a total volume of 500 mL to a total volume of 1 liter. This reflects a dilution normally performed on the samples after receipt at the laboratory. By performing this dilution in the field under close supervision of the project tech lead and sample team leads, the project was readily able to comply with the 70 Bq/gram ceiling limit for shipping the associated SVOC samples in a non-radiological classification per DOT regulations.

8.1.3 SCS Trains and Screening

A field change was approved to allow for cancellation of a scheduled third radiological contamination evaluation train (SCS-EVAP-3), based on consistent and low radioactivity results obtained for all previous sample contamination trains and routine gamma counting screening that was performed in accordance with MCP-1173, *Package and Ship NWCF Offgas Emissions Samples Offsite for Analysis*, Revision 2.

8.1.4 Metals and Anions Sample Collection

No field changes were required for the metals and anions sample collection runs. All runs proceeded in accordance with the sample collection checklists and test plans.

8.1.5 Miscellaneous Decisions

A final field change capturing five different field decisions was processed and approved. Per QAPjP language, not all of the decisions under this field change were required by project planning documents to be documented by a field change. However, the PQAO and the PTL decided it would be a best management practice to well document these decisions, and this process was the most accommodating and represented a configuration management control mechanism totally internal to the project. The following change elements were approved on this change form.

Element1:

It was determined that the pH meters supplied by the sampling contractor and in the field for this project could not meet reasonable time to stabilization criteria. Based on this fact, a field decision was made by PQAO and PTL to allow the samplers to do all pH measurements with pH paper versus requiring a meter. This was facilitated by the fact that in-field neutralizations of liquid sample fractions was not necessary as in the emissions inventory for

the NWCF Calciner. Approval was given at beginning of sample collections for the use of indicator paper for pH measurements in NaOH impinger sample fractions due to the harsh effects of the high pH.

Element 2:

This documents and certifies the assumption made early in project that the oxygen monitor readings of the sampled gas stream basically reflected the concentration of oxygen in ambient air. This assumption was used to relax standard EPA method calibration protocols and was already allowed by the QAPjP.

Element 3:

In conjunction with Element 2 above, it was decided to use oxygen cylinders already in inventory and marked as 20.8% O₂ rather than secure standards as cited in 40 CFR 60. In an associated decision, it was determined that for this project, the percent drift determinations would be made over time lines comparable to the actual train run times versus the 24-hour comparison baselines found in the 40 CFR 60 regulations which were inferentially tied to continuous monitoring.

Element 4:

Similar to Element 3 above, two other decisions related to the operation of the "continuous emissions monitoring system (CEMS)" monitors were made before inception of sample collections. First, use of a non-heated Perma-Pure® dryer to condition sample stream was authorized. Second, a rotameter with a 0-0.8 Lpm range was selected for use with the O_2 monitor. This resulted in a target flowrate of 0.75 Lpm rather than the 1.0 Lpm cited in the standard method.

Element 5:

Typical condensate recoveries from Method 0050 and Method 0060 trains were much less than 1.0 ml. The condensate and knockout (KO) rinse was added to impinger K1- K2 contents and rinses. This was per approved checklists. Additionally, for VOCs, the condensate fraction was topped to fill a 20-ml standard VOA vial and acidified with 8N HCl to a pH of <2. Reagent water blanks for VOCs analyses were processed in same fashion as 0031 condensates. In retrospect this decision element is redundant to other field changes already processed.

8.2 Data Quality Indicators

As of this point, all post-laboratory data evaluations for achievement of qualitative objectives and for quantitative data quality indicator acceptance criteria have been performed by the PTL and the PQAO. With the exception of a final evaluation of inter-train precision based on calculations of RSDs associated with results of surrogates from all trains for VOCs and all trains for SVOCs, the data quality indicators presented in the QAPjP have all been evaluated.

Reviews of analytical reports indicated that method performance and associated QC, as depicted in the lab reports, met analytical method and project planning document requirements, with a few instances of failures to meet individual QC criteria. The results for the vast majority of

associated QC data meet QAPjP criteria and support current designated project uses of this data. As stated, an independent analytical data validation to the cited Statement of Work (SOW) requirements found in ER-SOW-156, INEL Sample Management Office (SMO) Statement of Work for Inorganic & Miscellaneous Classical Analyses, Revision 1, ER-SOW-169, Statement of Work for Organic Analyses Performed for INEL Sample Management Office, Revision 0, or in associated standard analytical methods has not been performed. A full data validation process could potentially lead to additional data qualifications based on standard methods or cited SOWs.

8.3 Sampling Documentation Reviews

As in past emissions tests conducted for the NWCF Calciner, all field sheets related to sample collections were reviewed in the field as the sampling proceeded. Reviews were conducted by both the PTL and by the PQAO, and were completed to schedule per the QAPjP. Minor omissions or errors in field-level paperwork were therefore immediately caught and corrections were implemented while the sampling team was still in the field, and/or, if deemed necessary, so that re-sampling could occur with minimal delays or additional costs. Most observations that required corrective actions involved the accuracy or completeness of field data forms, and these instances were actually infrequent with respect to the sheer volume of field data entries required for the project.

All data were manually recorded in the field into the associated logbooks, sample data sheets and sampling checklists associated for each sample train type used during project sample collections. The data on sample data sheets were then uploaded into laptop computer templates of these same respective forms. There were some observed anomalies between some of the field definitions on the paper copies versus those on the electronic templates. These were noted in the individual internal PQAO reports to the PTL during each train type (0031, 0030, 0050, 0060) testing period. The sampling contractor (SAIC) made accommodations in each case by either giving more specific instructions to the sample collectors regarding the required entries on the paper forms, or by changing appropriate entry fields in the electronic templates. All changes were reviewed and approved in the field as required by the QAPjP.

As a result of reviews of the field-level documentation, it was discovered that the sample collectors had noted that sample #3411, Set#1 Anasorb-747® tube for Train 0031-END-1 had a crack at one end. Subsequent reviews of the laboratory entries into the related chain-of-custody forms did not indicate that this condition was noted by lab personnel on receipt of the samples. The laboratory analytical results appear consistent with other corresponding Anasorb-747® results and meet the necessary surrogate and internal standard recoveries.

Reviews of calibration documentation for associated sampling equipment identified no deficiencies with respect to requirements. Reviews of chain-of-custody and request for analysis forms identified no deficiencies in those documents.

8.4 Records Management

Records associated with this project have been retained and filed in an approved secure central file location (CFL) per company records management requirements. Project records have been categorized and dispositioned as environmental records and are currently assigned a permanent retention period. Per the project QAPjP and related company requirements and procedures for the designation and management of quality records, the following records have been further characterized as quality records:

- Quality Assurance Project Plan (QAPjP)
- Test Plans
- Logbooks
- Certificates of Analysis
- Calibrations
- Field Data Sheets
- Field Changes
- COC/RFA
- Analytical Data and Emissions Calculations Spreadsheets
- QA Reports
- Limitation and Validation Reports (not applicable yet for this project phase)
- Final Reports

Some of the above records are in paper form, some in electronic format, and some in dual media. All are stored appropriately in locked cabinets and controlled key access within the designated CFL. A file index has been prepared for these project records, and is available at the CFL. All records in CFL have been assigned appropriate INEEL uniform file codes in compliance with associated company procedures for management of files and records.

8.5 Review of Spreadsheet Calculations

As part of their contracted services, the sampling contractor provided spreadsheets which captured all appropriate field sampling data, analytical data, and project-required plant operations data, and which calculated from this data estimated total emissions rates from the NWCF ETS. As referred to elsewhere in this report, these estimates are conservative contributors to the emissions related to the operation of the ETS itself because other sources of miscellaneous plant tank operations continuously emit purge and/or vessel sparging gases to this same NWCF offgas line.

The first line of independent review and QC of these contractor spreadsheets occurred internal to the contractor. A second 100% review was conducted by the PTL, with any required corrections being implemented in conjunction the contractor for sake of configuration management and documenting general agreement with changes. Lastly, the PQAO reviewed in excess of 20% of the resultant pertinent entries after each iteration of changes. This comprehensive and iterated approach exceeded the basic requirement of the QAPjP that the PQAO verify only 20% of all entries and resultant calculation values. Once the sampling contractor lead, PTL, and PQAO were in agreement with the acceptability of the spreadsheets, the spreadsheets were noted as verified and released to be used on final report compilations.

8.6 Analytical Results

8.6.1 Data Reporting and Flagging

The QAPjP, associated task order statements of work, and technical lead guidance to the analytical laboratory defined project-specific requirements for data flagging, assignment of "<" symbols, and selection of most conservative and technically defensible result values for purposes of inserting conservative (high-biased) estimators of emissions rates for each identified compound into the emissions calculations. These requirements were in addition to the standard method-related data qualification flagging, and derive from the following EPA guidance documents:

- EPA 1998a, Guidance on Collection of Emissions Data to Support Site-Specific Risk Assessments at Hazardous Waste Combustion Facilities, EPA530-D-98-002, August.
- EPA 1998b, Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, EPA530-D-98-001A, July, Appendix A-1, Table A-1.
- Rule 1. When there was a non-detect below the MDL in a train fraction for a given compound, then the lesser of the RDL or the RL was used.
- Rule 2. When the laboratory RL is greater than the RDL, and a compound was detected above the MDL in a train fraction, but the result was less than the RDL, then the RDL was used.
- Rule 3. When the RL is less than the RDL, and a compound was detected in a given train fraction above both the MDL and RL values, but less than the RDL, then the RDL was used.
- Rule 4. When the RL is less than the RDL, and a compound was detected above the MDL, but result was less than the RL, then the RL was used (not the RDL).
- Rule 5. Any compound that was detected above the RDL was used for the risk calculation applications and no "<" ("less than") sign was assigned for that result in the respective train fraction.
- Rule 6. When a result for a SVOC or VOC target compound in a given train fraction was greater than MDL, but less than the RL, and result was assigned an estimated flag, the "<" flag was also assigned.
- Rule 7. Whenever a "<" flag was assigned to any given train fraction result, then the "<" flag propagated to the train total for that compound, unless it was dropped due to protocol of rounding to significant figures in the train total summation process. (ASTM E29-93a 1999).

Rules 2 and 5 default to the RL, not the RDL, when the RL is less than the RDL, and the "hit" was less than the RL. This was justified since the RL is a statistically established conservative RL, established by the analytical laboratory. Therefore, team assessed uses of RL value for risk calculations as a justified approach.

Most of the lab-assigned data qualifier flags are based on lab methods and procedures, and are standard to a large majority of environmental services laboratories. For metals analyses, the QAPjP required "B" flags to be assigned to metals results greater than MDL but less than the Reporting Limit.

Additionally, a system of assigning project flags "P", "N," and "A" to train total results was developed to evaluate the significance of each given target analyte result for the complete sampling train based on the relative occurrence of real hits for the various train fractions that comprised each sample train. The "P" indicated that related compound was detected in some train fractions, but not all. The "N" indicated that there was no positive detection in any train fraction for that compound. Lastly, the "A" flag on the train total result indicated that the compound was detected in all of the train sample fractions.

8.6.2 Blank Corrections

Blank corrections for metals trains are allowed by the cited EPA guidance documents and standard air sampling methods. Reagent blank corrections were only made where actual hits occurred in the reagent blanks.

The performance of the SMVOC blank sample indicated that residual acetone and methylene chloride was present in the sample collection line connecting the probe to the train setup. The resulted from failure to adequately purge the sample collection line following collection of the SVOC samples which involves rinsing the line with a mixture of acetone and methylene chloride. The VOC results showed a rapid decay of acetone and methylene chloride in successive sample fractions. In spite of the fugitive contamination (which was included in the emissions inventory), volatile species emissions were very low; therefore, this problem is not considered a significant limitation of the data set. In order to correct this anomaly, it is recommended that a separate VOST probe always be used to collect the SMVOC trains. In the present inventory, the Project Technical Lead authorized the SVOC Method 5 probe for the SMVOC runs to reduce the risks associated with insertion and removal of a second probe into the NWCF offgas duct.

8.6.3 Data Reporting

Data reporting from laboratory was comprised of Certificates of Analysis, EDDs, and actual final reports which included complete data packages constructed to the lab's data package level equivalent to the INEEL Tier 1 reporting requirements. The INEEL internal documents that prescribe these data package expectations are ER SOWs -156 and -169. These reporting requirements were meant to allow for later validation of data should project management decide to subject this data to either a Level A or a Level B data validation per existing INEEL Sample Management Office procedures. Such a future validation decision might be made based on further identified uses of data or other criteria such as permit support, operational changes, planned facility modifications, etc.

8.6.4 Analytical QC

8.6.4.1 MS/MSD and LCS/LCSD Samples

Although analytical performance is treated in Section 5 of this report, there are some laboratory related QC aspects of results which need to be discussed in this section. The first QC topic area deriving from QAPjP relates to the selection and analysis of matrix spike samples and matrix spike duplicate samples, as well as the alternative approach of analyzing laboratory control sample spikes and duplicates.

The structural configuration of these EPA standard methods air sampling trains and non-homogeneity of matrices present in the various train sample fractions collected from the trains make traditional application of matrix spikes, matrix spike duplicates, and even sample splits very difficult. Splitting of sample fractions for analyses to calculate precision estimators obviously raises associated detection limits for those trains. Simultaneous or sequential operation and sample collections from two or three complete trains in order to derive estimates of precision and accuracy can quickly become very expensive and time consuming.

For this project, the PTL and contract laboratory project manager determined that either MS/MSDs or LCS/LCSDs with surrogate spikes would be utilized by analytical lab for various analyses. These associated surrogate spikes and acceptance criteria are listed in Table 3-1 of QAPjP. The RPD and percent recovery of these spikes were determined and provided by the contract laboratory. Evaluation of these data quality indicators was then accomplished later by the project team, using the criteria found in QAPjP Table 3-1.

The approach taken by laboratory for SVOCs was to analyze a front-half Composite LCS/LCSD and a back-half composite LCS/LCSD. For the aqueous matrices associated with 0010 trains, not only was a LCS/LCSD pair analyzed, but the lab also performed a 3-way split of the condensate and impinger contents for Run 2, using two of the split fractions to develop a MS/MSD pair. This allowed for generation of important matrix-specific information, but also tripled the detection limits for the non-QC sample aliquot. This is also discussed to a degree in Section 5.

Additionally, the XAD-2® tubes utilized in SVOC sampling were pre-spiked with 200 μ g of a 13 C₃-Naphthalene sampling surrogate. The determined recoveries of this surrogate were evaluated later in the project, and are discussed in Section 5 of this report.. Application of this labeled surrogate occurs prior to sample train operation and is a comprehensive estimator for the overall accuracy of surrogate application, collection method, laboratory sample prep, and analytical method. Additionally, recovery result is an indicator of potential losses of surrogate (or other SVOCs) or sample media cross-contamination occurring during shipments of same media to field or during shipment of collected samples back to the lab. All of the recovery results for this labeled sampling surrogate were in control.

With regard to VOC analyses of 0031 train samples, the same approach was taken, except that the QAPjP listed the recovery surrogates typical to Method 0031 and the following matrix spike compounds: 1,1-dichloroethane, trichloroethane, benzene, toulene, and chlorobenzene. These were selected with technical guidance from the INEEL SMO and reflect a subset of the standard surrogates used in the laboratory method which implements SW-846 Method 8260B. No spikes of the Tenax® media prior to sample collection were required. Again, acceptance criteria for these data quality indicators related to precision in accuracy were presented in QAPjP Table 3-1. The analytical report from the lab does not discuss results for such a LCS/LCSD. This may be a potential project-specific deficiency in the VOCs analyses unless additional data are located in the raw data packages.

For the Method 0060 metals trains, performance of post digestion spikes in accordance with EPA Method 6010B was an authorized approach. Additionally, for mercury, the QAPjP specified a MS/MSD pair. All associated acceptance criteria in terms of RPDs and percent recoveries were given in QAPjP Table 3-1. Again, for the metals train configuration there is no technically representative way to pre-spike train fractions before sample collection. As of time of this report, PQOA has not confirmed that lab reported associated LCS/LCSD results required by QAPjP.

Given the complexities of these matrices, the project team chose not to define sample fraction selection criteria or required frequencies of MS/MSDs to the lab in the QAPjP. Ongoing technical

consultations between the analytical lab and PTL determined the exact approaches which were taken in this regard for MS/MSD and LCS/LCSD analyses. They are included in the Requests-for-Analysis that were included in the Task Order Specific (TOS) Statement of Work (SOW) for sample analysis.

8.6.4.2 Performance for Internal Standards and Surrogates

Results for internal standards and surrogates for the VOCs analyses appeared to be acceptable based on QAPjP criteria. One outlier was Anasorb tube sample #3364 where results were non-usable. Some difficulties were encountered in recovery of the internal standard perylene-d₁₂, one of the six internal standards for the 8270C analysis of the SVOC samples. In order to obtain acceptable recovery of this standard, it was necessary for the analytical laboratory to dilute the samples. This increased the detection limits for the reference target analyte species. A more complete discussion on this anomaly is provided in Section 5 and the STL Final Analytical Report (STL 2001).

In summary, all QA/QC criteria meet the data quality objectives with only two notable exceptions. First, there was some difficulty in recovering perylene-d₁₂, one of the six internal standards used by the contract analytical laboratory for the Method 8270C SVOC analysis. The project used a trial XAD-2[®] to determine that the performance based QA/QC indicators would likely be achieved without modifications to the sample collection or analytical procedures. Thus, the poor performance of perylene-d₁₂ was not expected. It was necessary to dilute the final sample volume using methylene chloride (the same organic solvent that is used to extract the samples from the sample collection media) and then to "re-shoot" the sample with the GC/MS instrument. Dilutions of 10-100 times were needed to achieve acceptable recoveries of the perylene-d₁₂ standard. The implication of this result is that a few of target SVOC analyte data can only be considered an estimate, although the data are still usable for the emission inventory. This should not be considered a serious limitation of the data since all of the SVOC target analytes were typically less than the laboratory RL. In order to avoid this problem in future evaporator emissions testing, it is recommended that successive 1 mL samples be withdrawn from the sample solution during concentration (i.e., "blowdown") of the methylene chloride extraction solvent. This should be completed for the first run to determine the maximum concentration that is possible without failing to meet the specified internal standards recovery efficiencies.

Second, surrogate compound recoveries for one Anasorb® tube (A-3364 in Run 0031-STRT-1) failed to meet the acceptable recovery range. The results of the three corresponding Anasorb® tubes for this run were averaged and substituted for this tube. Surrogate performance and internal standard performance for all other Tenax® and Anasorb® tubes was generally excellent; therefore, the quality of the four SMVOC runs provide an accurate measurement of the target VOC analytes. Thus, this limitation did not significantly impact the run results. The run total was comparable to the results for the other 3 SMVOC runs.

8.7 Request for Analysis and Chain-of-Custody Forms

The analytical services laboratory used for this project utilized a system of pre-printed labels for samples based on a predetermined master sample list, in conjunction with "Request-for-Analysis" (RFA) and COC forms. This system greatly minimized chances for sample identification errors during the sample collection process. This is critical when there are multiple sample fractions for each train, many of which must be accurately combined either in the field or at the laboratory after sample receipt and log-in.

Reviews of closed out COC forms indicated only one instance of receipt of a shipping container without all container seals being intact. That occurrence was for the final probes rinses collected on June 25, 2001. There were otherwise no indications of any sample abnormalities observed for any sample receipts by the lab. All shipments of samples for analysis for organics arrived within acceptable temperature ranges per EPA criteria for sample preservation. Per the standard EPA methods, samples from 0050 and 0060 trains were not cooled during or prior to shipment.

8.8 Field Assessments by PQAO

In adherence with the QAPjP requirements for field assessments of sampling activities, surveillances/assessments were conducted for a single complete train run from each type of sample train used during the testing period for the NWCF ETS emissions. As a result some field changes processed, and corrective actions were taken in the field whenever necessary. There was no necessity per company procedures to initiate any forms for potential discrepancies or nonconformance reporting. Corrective actions were facilitated in the field during the respective sampling period.

Multiple types of checklists were utilized. Some criteria were based on the sampling protocol checklists themselves, while others dealt with good lab practice and work-site housekeeping. Housekeeping and lab practices ranged between acceptable to exemplary. These aspects were very important to this project given the spatial constraints of the sample collections area, rapidity of work schedule, and the multiple tasks occurring within the associated work hoods. Importance ranged from quality to safety, spill prevention, waste management, and effective radiological controls.

Field observations by the PQAO of the sampling team use of pH meters supplied by their company to perform pH measurements on project samples exhibited a failure of these meters to perform adequately with regard to stabilized readings in the buffered calibration standards or project samples. The PQAO, PTL, and SAIC sampling team lead agreed that substitution of pH indicator paper for all field pH measurements had adequate accuracy. This was facilitated by the fact that no sample neutralizations were required for this project phase. The section of this report dealing with field changes also discuses these points.

For this project, it was technically determined prior to inception of field activities that CEMS was not required to monitor the same miscellaneous gaseous emissions components that were a concern when the NWCF Calciner was running and being tested for emissions. In the past these emissions parameters included O₂, CO₂, CO, NO, NO₂, HCl, CH₄, SO₂ and total hydrocarbons (THC) and these derived from the aspects of feed to the Calciner and the physical presence of combustion products in the NWCF Calciner process. HCl emissions of ETS were evaluated using the results of the samples collected from the scheduled Method 0050 trains. For this project, dynamic monitoring was considered to be of technical value only for O₂ emissions. Additionally, it was predicted that the oxygen levels would be extremely close to those of ambient air. The monitored results from O₂ monitor throughout sampling campaign did actually reflect that oxygen concentration levels in the sampled offgas were essentially the same as ambient air concentrations of O₂.

Latitude was built into the QAPjP regarding the operation and the calibration of the O_2 monitor. Relief was given from the regulatory (40 CFR 60) requirements for the associated calibration gases, % Drift measurements, calibration frequency, etc. Additionally, the technical applications to associating the O_2 levels with fairly short interval sample train runs, versus the usual regulatory application of 24-hr continuous monitoring, justified the relaxed protocol. It was determined that an appropriate calibration frequency for this monitor was that the calibrations must

occur prior to and after each test period, but not to exceed 24 hours between calibrations. Requirements were adequately implemented in the field. As part of the assessment of the operation and calibrations of O_2 monitor it was documented that samplers were misinterpreting one entry associated with the documenting of % Drifts for this monitor. They were appropriately instructed in correct completion of the calibration sheets, and no further problems were observed.

9. OFFGAS EMISSIONS AND HEALTH RISK

Species emissions rates were calculated for all target analytes and tentatively identified compounds emitted from the NWCF Evaporator Tank System. Data for the train totals listed in Appendix A and the field sample collection data listed in Appendix B were compiled in an Microsoft Excel Program spreadsheet to compute both emissions rates [g/s basis] and offgas concentrations [μ g/dscm basis], relative to conditions in the NWCF offgas duct where sampling was performed. Both the emissions rates and offgas concentrations summary sheets are included in Appendix B. Only a limited interpretation of emissions trends and potential risk to public health has been made at this time.

9.1 Emissions Rates and Trends

It was postulated that the release of organic compounds and volatile mercury present in the tank wastes would be higher at the start of the batch when the evaporator is filled with fresh feed. Conversely, it was hypothesized that metals emissions rates would increase with the density of the evaporator contents since the mechanism for non-volatile metals is primarily attributed to aerosol entrainment. Evolution of the organics, however, especially the semi-volatile organics, is a function of the evaporator temperature.

Figure 6 shows the average evaporator vessel temperature during a typical Method 5 sample collection period at the start and the end of an evaporator batch. The temperature was initially lower at the start of the run when steam to the heating coils was initiated. The temperature gradually increased, reaching the desired operating temperature of approximately 100°C at around 130 minutes-almost 3/4 through the first sampling period. Fresh feed to the evaporator was not increased significantly until the evaporator temperature reached the boiling temperature. The sample collected at the end of the evaporator run was performed when the evaporator vessel was at the peak temperature. At this time, feed was continually being supplied to maintain a constant volume in the evaporator. The volume of waste solution fed to the evaporator during the final three hours of the batch varied, but was approximately equal to ½ of the evaporator batch.

Figure 6. Average evaporator vessel temperature comparison for SVOC runs at the start and end on the evaporator batch.

9.1.1 Organic Compounds

Figure 7 plots the concentration of the 20 highest VOC compounds emitted from the evaporator. There are surprisingly small differences in the emissions rates at the beginning and end of the evaporator batch. The single highest volatile organic detected was dodecane, which was not a target analyte, but was reported as a tentatively identified compound. On a volumetric basis, the concentration of dodecane was only 54 ppbv. Acetone emissions were also relatively high, but still were in the low parts-per-billion range (*i.e.*, 30 ppb maximum). Some of the other volatile organic measurements were actually higher at the end of the batch, although the results were near the method detection limits and were susceptible to some process variations and sampling uncertainty at these lower levels.

Figure 7. Comparison of volatile organic emissions at the beginning and end of evaporator batches.

The top 20 SVOCs measured in the offgas stream are plotted in Figure 8. Semivolatile organic compounds also appear to be only slightly higher at the start of the evaporator batch. Benzoic acid (a target analyte) and benzaldehyde (a tentatively identified compound) were the two most prevalent semivolatile organics emitted during operation of the NWCF ETS. The maximum emissions concentrations for benzoic acid and benzaldehyde were 310 ppb and 80 ppb, respectively. On a volumetric basis, the sum of all volatile and semivolatile organics is less than 1 ppm. All other SVOCs measurements are near the method detection limits for the respective species.

With the exception of benzoic acid, all of the SVOC species emitted from the evaporator were also detected during the NWCF Calciner offgas emissions inventory (Boardman 2001). Nearly all of the compounds are derivatives of benzene or other cyclic compounds and are possibly the products of incomplete combustion of the kerosene used to heat the Calciner. These compounds probably entered the tank system when Calciner scrub was recycled to the tank farm. It is further postulated that benzoic acid and benaldehyde were either formed during combustion of the kerosene or they were formed by oxidation of benzene and toluene in the acidic waste solutions. Relatively higher emissions of benzoic acid can be explained by noting that it is readily stripped from waste solutions by steam.

In summary, the rate of organic emissions at the start and end of the evaporator batches were not significantly different. This phenomena is attributed to the trade off between evaporator temperature and the volume of fresh waste solution fed to the evaporator during the respective sampling periods. The hourly total emissions rate for all volatile and semivolatile organic emissions was less than 0.02 lbs/hr. This is significantly less than the 3 lbs/hr limit that is generally considered significant for RCRA waste treatment units permitting decisions.

Figure 8. Comparison of semi-volatile organic emissions at the beginning and end of evaporator batches

9.1.2 Inorganic Compounds

The average metals emissions rates at the beginning and end of evaporator batches are plotted in Figure 9. As anticipated, metals emissions, including mercury, were typically higher at the end of an evaporator batch when the evaporator solution reached its maximum density. Assuming aerosol droplet entrainment with the overhead gas was constant throughout the run, then the emissions of all nonvolatile species should correlate with the solution density. The exception is mercury. If volatile elemental mercury exists as a dissolved gas in the waste solutions, then it would tend to be volatilized at the beginning of the evaporator runs. Otherwise, if the mercury is complexed or speciated in the wastes, then it would tend to be emitted as a non-volatile entrained species. These data indicate that mercury was mainly emitted as non-volatile particulate, although no speciation was attempted to distinguish elemental versus oxidized forms of mercury in the effluent gas stream. Aluminum, manganese, and zinc emissions appear to correlate with their relative abundance in the evaporator feed and bottoms. The emissions of all other metals were relatively low, as were their concentrations in the feed.

Figure 9. Comparison of metals emissions at the beginning and end of evaporator batches (not including final probe rinse species apportionment).

Throughout the sampling period, it was necessary to leave the 12-ft Method 5 sample collection probe at a fixed position in the offgas duct to reduce the potential for contamination spread and personnel radiation exposures. The probe was removed at the end of the 3-week sampling period and rinsed with acetone, followed by nitric acid, to obtain a final probe rinse measurement of particulate and metals absorbed on the probe's glass liner. Approximately 93 dscm of offgas sample was drawn through the probe over the duration of the offgas emissions inventory. The apportioned amount of particulate and metals for a single run is thus roughly 3/93 [dscm/dscm] or 3.2% of the total particulate and metals mass measured in the final probe rinse. Thus, 3.2% of the particulate and metals detected in the final probe rinses should be apportioned to the run averages.

The difference between the four most abundant metals detected in the offgas and the apportioned amount in the final probe rinse, relative to the average emissions was <10% for Zn, <6% for Al, <0.5% for Mn, and <0.1% for Hg. The percent of apportioned probe mass for the minor species was also typically low, although a comparison of the results is skewed by the fact that the measurements are near or below the analytical method detection limits. In conclusion, these results indicate that the metals uptaken on the probe liner were insignificant with respect to obtaining an accurate emissions inventory for the target metals species.

Total particulate and chloride emissions rate averages at the start and end two evaporator batches are illustrated in Figures 10 and 11. There were relatively small differences in the chloride emissions at the start and end of the batch. Hydrochloric acid levels are significantly higher as expected. Still, the sum of chloride emission contributions from HCl and Cl₂ is less than 1 ppmv.

Particulate emissions follow the trend of the semi-volatile organic species which were slightly higher at the beginning of the batch. Figure 11 also compares the apportioned particulate measurement for the final probe rinse (*viz.*, 3.2% of the final probe particulate measurement as discussed above). The relative amount of particulate absorbed on the probe was 20-25% of the train total. It can be inferred that some SVOCs were also deposited on the probe liner, with the maximum being similar to the particulate. This fact should be taken into consideration when using the SVOC emissions rates.

Figure 10. Comparison of chloride emissions at the beginning and end of evaporator batches.

Figure 11. Comparison of particulate emissions at the beginning and end of the evaporator run with probe particulate apportionment.

9.2 Emissions Health Risk

The emission rates of hazardous air pollutants from the NWCF ETS were used to calculate risk to human health. Pollutants from the NWCF ETS are released from the same point and under the same conditions as NWCF Calciner emissions. Therefore, to a close approximation, the NWCF ETS can be scaled to the risk terms previously determined for the NWCF Calciner. The NWCF Calciner results are described in NWCF Calciner Emissions Inventory -Final Report for Phase IV Testing (2001).

Compounds with an EPA hazards quotient (HQ) or a cancer risk (Risk) present in the NWCF ETS samples, were ratioed to the NWCF Calciner emissions rate to determine an estimated NWCF ETS risk. Maximum values were used to bound risks. The NWCF Calciner emission rates were normalized to an annual basis. To compare the NWCF ETS results, measured NWCF ETS emissions were multiplied by a factor of 0.274 to normalize them to an annual basis. This is based on the NWCF ETS operating twelve hours a day, 200 days a year.

It was observed that the emissions rates were much lower for the NWCF ETS than from the NWCF Calciner with the exception of benzoic acid. The semi-volatiles were the largest contributor to the HQ and the Risk. The largest contributor was a phthalate (bis(2 ethylhexyl)phthalate) which is a common sampling or laboratory contaminate from plastics such as tubing, bottles, etc. Most of the materials "detected" were present at levels below the RL and in only a few samples. Benzoic acid, the single organic found in high concentrations than the NWCF Calciner, has a relatively low cancer risk and hazard quotient compound. The total HQ for the NWCF ETS was 6.2e-6 as compared to 3.3 e-03 for the NWCF Calciner and 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to 1.9e-07 for the NWCF Calciner and an EPA target of 1e-5.

A risk summary is given in Figures 12 and 13. Tables 18, 19, 20, and 21 give the concentration ratios and scaled risk factors.

Figure 12. NWCF ETS EPA hazards quotient.

Figure 13. NWCF ETS cancer risk by pollutant category.

Table 18. Risk scaling of Method 0010 analytes.

Analyte	NWCF Hazard	Concentration Ratio	NWCF ETS Hazard	Risk
Acenaphthene	3.70E-12	2.61	9.60E-12	
Acenaphthylene				
Acetophenone	5.60E-09	0.0481	2.69E-10	
Anthracene	6.60E-12	351	2.31E-10	
Benzoic acid	4.50E-09	0.15	6.75E-10	
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b)fluoranthene				
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene				
bis(2-Chloroethyl)ether	9.90E-10	0.02	1.98E-11	2.00E-1
bis(2-Ethylhexyl)phthalate	1.70E-04	0.013	2.21E-06	2.00E-1
4-Bromophenyl-phenylether	4.60E-07	0.03	1.38E-08	
Butylbenzylphthalate	7.50E-09	0.02	1.50E-10	
Carbazole				
2-Chloronaphthalene	4.20E-09	0.02	8.40E-11	
2-Chlorophenol	2.20E-06	8.00E-04	1.76E-09	
4-Chlorophenyl phenyl ether				
Chrysene				
Di-n-butylphthalate	4.50E-07	0.025	1.13E-08	
Di-n-octylphthalate	3.50E-09	0.1	3.50E-10	
Dibenz(a,h)anthracene				
Dibenzofuran				
1,2-Dichlorobenzene	1.60E-09	0.09	1.44E-10	
1,3-Dichlorobenzene	9.90E-10	0.1	9.90E-11	
1,4-Dichlorobenzene	3.90E-10	0.12	4.68E-11	
Diethylphthalate	3.20E-09	0.02	6.40E-11	
Dimethyl phthalate	1.40E-10	2.00E-02	2.80E-12	
2,4-Dinitrotoluene	3.90E-08	0.014	5.46E-10	
2,6-Dinitrotoluene	2.10E-06	0.02	4.20E-08	
1,2-Diphenylhydrazine	3.50E-09	0.02	7.00E-11	8.00E-1
Fluoranthene	9.70E-10	21.51	2.09E-08	
Fluorene				
Hexachlorocyclopentadiene	2.40E-04	2.00E-03	4.80E-07	
Hexachlorobenzene	6.10E-07	0.02	1.22E-08	1.50E-1
Hexachlorobutadiene				
Hexachloroethane	8.20E-07	0.014	1.15E-08	1.50E-1
Indeno(1,2,3-cd)pyrene				
Isophorone	3.90E-09	0.02	7.80E-11	1.00E-1
2-Methylnaphthalene				

Table 18. Risk scaling of Method 0010 analytes.

Analyte	NWCF	Concentration	NWCF ETS	Risk
	Hazard	Ratio	Hazard	
N-Nitrosodimethylamine				
N-Nitrosodiphenylamine	2.40E-12	0.03	7.20E-14	
Naphthalene	3.60E-07	0.014	5.04E-09	
Nitrobenzene	3.40E-09	3.00E-03	1.02E-11	
2-Nitrophenol				
4-Nitrophenol	1.40E-06	8.00E-04	1.12E-09	
2,2'-Oxybis(1-chloropropane)				
Phenanthrene				
Phenol	2.90E-08	4.00E-03	1.16E-10	
Pyrene	3.20E-08	341	1.09E-06	
1,2,4-Trichlorobenzene	1.60E-09	0.1	1.60E-10	
Total		-	3.90E-06	6.32E-11

^{1.} Compounds evaluated using PAH high resolution method for NWCF Calciner.

Table 19. Risk scaling for Method 0031 analytes.

Analyte	NWCF	Concentration	NWCF ETS	Risk
	Hazard	Ratio	Hazard	
Acetone	6.30E-08	0.023	1.45E-09	
Benzene	4.10E-06	7.70E-04	3.16E-09	
Bromomethane				
2-Butanone	1.50E-09	0.046	6.90E-11	
Carbon disulfide	9.00E-10	0.147	1.32E-10	
Carbon tetrachloride	1.30E-08	0.0351	4.56E-10	1.70E-13
Chlorobenzene	4.80E-08	0.0076	3.65E-10	
Chloroethane	3.20E-11	0.044	1.41E-12	
Chloroform	1.90E-08	0.044	8.36E-10	6.60E-13
Chloromethane	1.50E-09	0.466	6.99E-10	3.70E-13
Dichlorodifluoromethane	2.00E-09	0.0466	9.32E-11	
1,2-Dichloroethane	3.20E-08	0.0356	1.14E-09	3.00E-13
1,1-Dichloroethene	1.00E-08	0.041	4.10E-10	3.40E-13
1,2-Dichloropropane	8.10E-08	0.03	2.43E-09	1.90E-13
Methylene chloride	5.50E-10	0.877	4.82E-10	4.80E-13
Toluene	7.20E-10	0.055	3.96E-11	
Trichlorofluoromethane	8.30E-10	0.02	1.66E-11	
Vinyl chloride	1.80E-12	0.0356	6.41E-14	6.40E-14
o-Xylene	4.80E-11	0.018	8.64E-13	
Totals			1.18E-08	2.574E-12

Table 20. Risk scaling for Method 0050 analytes.

Analyte	NWCF Hazard	Concentration	NWCF ETS	Risk
		Ratio	Hazard	

Chloride (as HCl)	1.50E-05	0.02	3.00E-07	
Chloride (as Cl2)	1.70E-07	0.0047	7.99E-10	
Fluoride (as HF)	3.50E-05	0.00082	2.87E-08	
Nitrate (as HNO3)	9.50E-04	0.00008	7.60E-08	
Nitrite (as HNO2)				
Particulate			-	
			40.577.05	
Total			4.05E-07	

Table 21. Risk scaling for Method 0060 analytes.

Analyte	NWCF Hazard	Concentration Ratio	HLLWE Hazard	Risk
Aluminum (Al)	5.7E-09	0.036	2.1E-10	
Antimony (Sb)	1.50E-09	0.056	8.48E-11	
Arsenic (As)	1.30E-14	2.2E-7	7.8E-22	
Barium (Ba)	7.50E-06	0.0025	1.88E-08	
Beryllium (Be)				
Cadmium (Cd)	1.70E-07	0.026	4.5E-09	1.70E-12
Chromium (Cr)	9.00E-07	0.047	4.23E-08	6.0E-11
Cobalt (Co)				
Copper (Cu)	4.50E-09	0.017	7.5E-11	
Lead (Pb)	2.90E-08	0.008	2.4E-10	
Manganese (Mn)	1.60E-05	0.085	1.36E-06	
Mercury (Hg)	2.10E-04	0.0036	7.56E-07	
Nickel (Ni)	2.30E-11	0.07	1.61E-12	1.30E-12
Selenium (Se)	8.20E-10	2.00E-11	1.64E-20	
Silver (Ag)				
Thallium (Tl)	2.7E-8	0.14	4.0E-9	
Vanadium (V)				
Zinc (Zn)	2.00E-08	5.00E-05	1.00E-12	
		•	Total	
Total			2.19E-06	6.3E-11

10. CONCLUSIONS

Characterization samples for the NWCF ETS were collected with only minor deviations from EPA protocols. Due to ALARA concerns, the samples were collected at a single point in the duct and the probe was not removed between sample trains. The NWCF ETS emissions rates for all species were relatively low in terms of regulatory emissions limits and health risk considerations. It was observed that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. Mercury emissions were less than 5 ppbv (< 40 μ g/dscm), while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. Particulate emissions (included the apportioned particulate recovered in the final probe rinse) are less than 0.9 mg/dscm and less than 0.7 mg/dscm at the beginning and end of the evaporator batch, respectively.

The estimated HQ for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The estimated cancer risk was 1.3e-10 compared to an EPA target of 1.0e-5. The NWCF ETS offgas emissions inventory was completed in accordance with the QAPjP developed and approved for this activity. Conventional EPA sampling and analytical methods were used to characterize volatile and semivolatile organic compounds, multiple metals, HCl/Cl₂, and particulate emissions.

Diligence in following sample checklists, continuous monitoring by either the Project Technical Leads and Quality Assurance Office, use of a master sample collection list, pre-defined sample labels, and RFA/COC documentation provided for the best possible sample collection accuracy and consistency. The data are believed to be accurate and representative of the NWCF ETS for the feed and system operating conditions during the offgas sampling period. A compilation of the process operating parameters, the offgas sample analytical data summaries, and the calculated emissions rates and liquid composition data for the evaporator feed, overhead condensate, and bottoms are included in the report appendices for permit applications purposes.

NWCF ETS operations were normal and consistent throughout the three-week sample collection period. Feed batches were consistent, as were the evaporator operating parameters and offgas system conditions. Radiation levels in the offgas samples were extremely low. Extended gamma scanning did not identify any gamma emitters in either the sample contamination trains or ongoing screening samples. Gross beta and gross alpha levels were only detected in the pico-curies range, easily meeting all of the analytical laboratory sample acceptance criteria. Tritium levels were low and proportionate to the low levels of moisture that were present in the NWCF offgas stream. Oxygen levels in the offgas duct were comparable to ambient air conditions.

Species absorption in the probe liner was minor. The exception may be organic particulate. The apportioned amount of organic particulate contained in the final probe rinse was approximately 25% of the average Method 0050 run total particulate measurements. This suggests that some semi-volatile organic matter could be potentially deposited on the probe liner. Even when the SVOC results are conservatively escalated by 25%, to account for the maximum potential portion of semivolatile material adsorbed on the probe liner, the outcome of the emissions rates are risk calculations are not significant.

Metal adsorption on the probe was low for all metals. Less than 0.1% of the mercury was deposited on the probe liner. Therefore, apportionment of the final probe rinse to the Method 0060 Metals trains is not significant.

11. REFERENCES

- ASTM Standard E29-93a, 1999, "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications."
- Bechtel BWXT Idaho, LLC, 2000, Balance of Plant Sampling and Analysis Plan (Input to PEWE and LET&D), PLN-613, Rev. 1, February 2000.
- Bechtel BWXT Idaho, LLC, 2001, INTEC Quality Assurance Project Plan for HLLWE Offgas Emissions Inventory Project, PLN-880, Rev. 0, May 2001.
- Bechtel BWXT Idaho, LLC, 2001, Test Plan for the HLLWE Gas Emission Inventory, PLN-879, Rev. 0, May 2001.
- Bechtel BWXT Idaho, LLC, 2001, Package and Ship NWCF Offgas Emissions Samples Offsite for Analysis, MCP-1173, Rev. 2, June 2001.
- Bechtel BWXT Idaho, LLC, Sample NWCF Offgas for Emissions Characterization, TPR-5496, Rev. 6, June 2001.
- Boardman, R. D., L. J. Young, N. R. Soelberg, and L. A. Matejka, 2001, NWCF Calciner Emissions Inventory Final Report for Phase IV Testing, EXT-01-00260, February 2001.
- Severn Trent Services, 2001, Analytical Report for the Idaho Nuclear Technology and Engineering Center (INTEC) High Level Waste Evaporator (HLLWE) Effluent Gas Emissions Inventory, September 2001.

APPENDIX A ANALYTICAL DATA SUMMARIES

	·		

CONTENTS

Table A-1.	HLLWE Run ID: 0010-STRT-1	A1
Table A-2.	HLLWE Run ID: 0010-END-1	A2
Table A-3.	HLLWE Run ID: 0010-STRT-2	A3
Table A-4.	HLLWE Run ID: 0010-END-2	A4
Table A-5.	HLLWE Run ID: 0010-BT-1	A5
Table A-6.	Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank	A6
Table A-7.	HLLWE Run ID: 0031-STRT-1	
Table A-8.	HLLWE Run ID: 0031-END-1	A8
Table A-9.	HLLWE Run ID: 0031-STRT-2	A9
Table A-10.	HLLWE Run ID: 0031-END-2	. A10
Table A-11.	Run 2, VOST Tenax Tube Pair Field Blank	. A11
Table A-12.	Run 2, VOST Anasorb 747 Tube Field Blank	. A12
Table A-13.	HLLWE Run ID: 0050-STRT-1	. A13
Table A-14.	HLLWE Run ID: 0050-END-1	. A14
Table A-15.	HLLWE Run ID: 0050-STRT-2	. A15
Table A-16.	HLLWE Run ID: 0050-END-2	
Table A-17.	M5 Particulate and Anion Train Run 2 Reagent Blanks	. A17
Table A-18.	M5 Particulate and Anion Train Run 2 INTEC	
	Deionized Water Reagent Blank	
Table A-19.	M5 Particulate and Anion Train Final Acetone Probe Rinse	
Table A-20.	HLLWE Run ID: 0060-STRT-1	
Table A-21.	HLLWE Run ID: 0060-END-1	
Table A-22.	HLLWE Run ID: 0060-STRT-2	
Table A-23.	HLLWE Run ID: 0060-END-2	
Table A-24.	HLLWE Run ID: 0060-BT-1	. A24
Table A-25.	Method 0060 Multi-Metals Train (MMT) Analytical Results	
	Summary Run 2 Front Half Composite Reagent Blank	. A25
Table A-26.	Method 0060 Multi-Metals Train (MMT) Analytical Results	
	Summary Run 2 Back Half Composite Reagent Blank	. A26
Table A-27.	Method 0060 Multi-Metals Train (MMT) Analytical Results	
	Summary Run 2 Mercury Impinger Composite Reagent Blank	. A27
Table A-28.	Method 0060 Multi-Metals Train (MMT) Analytical Results	
	Summary Run 2 HCl Impinger Rinse Solution Reagent Blank	. A28
Table A-29.	Method 0060 Multi-Metals Train (MMT) Analytical Results	
	Summary Run 2 INTEC Deionized Water Reagent Blank	. A29
Table A-30.	Final (Post-Test) Acetone Probe Rinse and Nitric Acid	
	Probe Rinse Composite Metallic Analyte Analytical Results Summary	A-30

			,	

BECHTEL BWXT IDAHO, LLC (BBWI)
INTEC HLLWE Effluent Gas Emissions Inventory
Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

MM-5 Train Summary - Run 1 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

Field Sample Name:

MM-5 Train

Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

Analyte	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total μg)		Project Specific
	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
Target Compound List			,							
Acenaphthene	83-32-9	1.3	U	6.6	U	1.9	U	< 9.8		N
Acenaphthylene	208-96-8	1.3	U	6.6	U	1.6	U	< 9.5		N
Acetophenone	9[8-86-2	2.0	U	44	J	2.6	U	< 49	J	P
Aniline	62-53-3	2.5	U	94	U	18	U	< 110		N
Anthracene	120-12-7	1.3	U	6.6	U	1.6	U	< 9.5		N
Benzidine	92-87-5	100	U	500	U	66	U	< 670		N
Benzoic acid	65-85-0	100	U	4,800	Е	9.4	U	< 4,900	Е	P
Benzo(a)anthracene	56-55-3	2.2	U	7.6	U	1.7	U	< 12		N
Benzo(a)pyrene	50-32-8	2.6	U	130	U	1.8	U	< 130		N
Benzo(b)fluoranthene	205-99-2	3.7	U	290	U	4.2	U	< 300		N
Benzo(g,h,i)perylene	191-24-2	7.3	U	160	U	2.1	U	< 170		N
Benzo(k)fluoranthene	207-08-9	5.5	U	420	U	2.9	U	< 430		N
Benzyl alcohol	100-51-6	92	U	470	U	4.2	U	< 570		N
bis(2-Chloroethoxy)methane	111-91-1	1.5	U	6.6	U	2.0	U	< 10		N
bis(2-Chloroethyl)ether	111-44-4	2.0	U	7.3	U	1.7	U	< 11		N
bis(2-Ethylhexyl)phthalate	117-81-7	14		100	J	11		< 120	J	A
4-Bromophenyl-phenylether	101-55-3	1.4	U	6.6	U	1.4	U	< 9.4		N
Butylbenzylphthalate	85-68-7	2.9	U	7.9	U	2.3	U	< 13		N
Carbazole	86-74-8	2.0	U	8.4	U	2.2	U	< 13		N
4-Chloro-3-methylphenol	59-50-7	2.6	U	8.1	U	6.6	U	< 17		N
4-Chloroaniline	106-47-8	3.1	U	79	U	7.9	U	< 90		N
2-Chloronaphthalene	91-58-7	1.3	U	6.6	U	1.4	U	< 9.3		N
2-Chlorophenol	95-57-8	2.6	U	6.6	U	1.7	U	< 11	<u> </u>	N
4-Chlorophenyl phenyl ether	7005-72-36	1.3	U	6.6	U	3.1	U	< 11		N
Chrysene	218-01-9	2.3	U	8.4	U	1.3	U	< 12		N

BECHTEL BWXT IDAHO, LLC (BBWI)
INTEC HLLWE Effluent Gas Emissions Inventory
Idaho National Engineering and Environmental Laboratory (INEEL)
STL Knoxville Project Number: 142503.40

MM-5 Train Summary - Run 1 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
Di-n-butylphthalate	84-74-2	1.9	J	100	U	2.3	U	< 100	J	P
Di-n-octylphthalate	117-84-0	11		150	U	2.5	J	< 160	J	P
Dibenz(a,h)anthracene	53-70-3	5.2	U	160	U	2.9	U	< 170		N
Dibenzofuran	132-64-9	1.4	U	6.6	U	2.9	U	< 11		N
	95-50-1	2.2	U	6.8	U	1.7	U	< 11		N
1,2-Dichlorobenzene	541-73-1	3.1	U	7.3	U	1.4	U	< 12		N
1,3-Dichlorobenzene	106-46-7	2.9	U	11	J	2.0	U	< 16	J	P
1,4-Dichlorobenzene		7.1	U	97	U	7.9	U	< 110		N
3,3'-Dichlorobenzidine	91-94-1	3.9	U	6.6	U	2.3	U	< 13		N
2,4-Dichlorophenol	120-83-2	5.4	J	9.4	U	1.4	U	< 16	J	P
Diethylphthalate	84-66-2		U	6.6	U	1.3	U	< 9.6		N
Dimethyl phthalate	131-11-3	1.7		50	U	1.5	U	< 59		N
2,4-Dimethylphenol	105-67-9	7.6	U			1.5	U	< 130		l N
4,6-Dinitro-2-methylphenol	534-52-1	13	U	120	U		U	< 270		N
2,4-Dinitrophenol	51-28-5	15	U	250	U	3.9		< 13		N
2,4-Dinitrotoluene	121-14-2	4.2	U	6.6	U	2.6	U			N
2,6-Dinitrotoluene	606-20-2	3.4	U	6.6	U	2.1	U	< 12		
1,2-Diphenylhydrazine	122-66-7	1.7	U	6.6	U	1.5	U	< 9.8		N
Fluoranthene	206-44-0	1.3	U	7.1	U	1.8	U	< 10	<u> </u>	N
Fluorene	86-73-7	1.3	U	6.6	U	2.6	U	< 10	1	N
Hexachlorocyclopentadiene	77-47-4	26	U	130	U	6.6	U	< 160		N
Hexachlorobenzene	118-74-1	1.5	U	6.6	U	2.6	U	< 11		N
Hexachlorobutadiene	87-68-3	3.7	U	9.7	U	1.9	U	< 15		N
Hexachloroethane	67-72-1	6.6	U	7.1	U	1.9	U	< 16		N
Indeno(1,2,3-cd)pyrene	193-39-5	5.5	U	140	U	2.3	U	< 150		N
Isophorone	78-59-1	1.7	U	6.6	U	1.8	U	< 10		N
2-Methylnaphthalene	91-57-6	1.5	U	6.6	U	2.3	U	< 10		N
2-Methylphenol	95-48-7	6.0	U	39	U	2.1	U	< 47		N
3-Methylphenol & 4-Methylphenol	65794-96-9	6.0	U	26	U	2.2	U	< 34		N

MM-5 Train Summary - Run 1 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

	CAS Registry	MM-5 Ti Front H Composi (µg)	alf	MM-5 Ti Back Ha Composi (µg)	alf	MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
N-Nitroso-di-n-propylamine	621-64-7	1.9	U	6.6	U	2.3	U	< 11		N
N-Nitrosodimethylamine	62-75-9	1.9	U	6.6	U	2.2	U	< 11		N
N-Nitrosodiphenylamine	86-30-6	1.6	U	12	U	1.4	U	< 15		N
Naphthalene	91-20-3	1.3	U	7.9	U	1.8	U	< 11		N
2-Nitroaniline	88-74-4	1.5	U	6.6	U	2.9	U	< 11		N
3-Nitroaniline	99-09-2	10	U	26	U	4.7	U	< 41		N
4-Nitroaniline	100-01-6	6.0	U	26	U	3.9	U	< 36		N
Nitrobenzene	98-95-1	1.9	U	12	J	1.7	U	< 16	J	P
2-Nitrophenol	88-75-5	8.4	U	80		2.6	U	< 91		P
4-Nitrophenol	100-02-7	8.7	U	63	J	3.9	U	< 76	J	P
2,2'-Oxybis(1-chloropropane) 8	108-60-1	2.6	U	10	U	1.8	U	< 14		N
Pentachlorobenzene	608-93-5	1.4	U	6.6	U	2.3	U	< 10		N
Pentachloronitrobenzene	82-68-8	2.0	U	6.6	U	2.6	U	< 11		N
Pentachlorophenol	87-86-5	50	U	250	U	3.4	U	< 300		N
Phenanthrene	85-01-8	1.3	U	6.6	U	1.9	· U	< 9.8		N
Phenol	108-95-2	2.9	U	72		2.2	U	< 77		P
Pyrene	129-00-0	1.9	U	6.8	U	1.4	U	< 10		N
Pyridine	110-86-1	2.3	U	9.7	U	5.2	U	< 17		N
1,2,4,5-Tetrachlorobenzene	95-94-3	2.3	U.	6.6	U	2.2	U	< 11		N
1,2,4-Trichlorobenzene	120-82-1	1.9	U	7.9	U	2.2	U	< 12		N
2,4,5-Trichlorophenol	95-95-4	6.0	U	17	U	2.1	U	< 25		N
2,4,6-Trichlorophenol	88-06-2	3.7	U	10	U	2.5	U	< 16		N

MM-5 Train Summary - Run 1 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-1. HLLWE Run ID: 0010-STRT-1

CAS Registry	MM-5 Train Front Half Composite ¹ (ug)	Back Half Composite ²	Condensate Composite ³	MM-5 Train Totals ⁴ (Total µg)		Project Specific
Number				Total ⁶	Flag	Flag ⁷
625-86-5	4.1		9.5	14	N,J,M	P
589-38-8		190		190	N,J,M	Р
591-78-6		230		230	N,J,M	P
2216-33-3	7.9			7.9	N,J,M	P
100-52-7		1,100		1,100	N,J,M	P
112-40-3		67		67	N,J,M	P
629-50 - 5		20		20	N,J,M	P
629-59-4	8.6			8.6	N,J,M	P
629-62-9	15			15	N,J,M	Р
126-73-8	23			23	N,J,M	Р
294-62-2	20		11	31	N,J,M	P
629-78-7	5.5		3.4	8.9	N,J,M	P
112-95-8			2.0	2.0	N,J,M	P
57-10-3	5.4			5.4	N,J,M	P
57-11-4	3.6			3.6	N,J,M	P
791-28-6			8.7	8.7	N,J,M	P
629-94-7			2.0	2.0	N,J,M	Р
7098-22-8			6.6	6.6	N,J,M	P
112-95-8			4.1	4.1	N,J,M	Р
	Registry Number 625-86-5 589-38-8 591-78-6 2216-33-3 100-52-7 112-40-3 629-50-5 629-59-4 629-62-9 126-73-8 294-62-2 629-78-7 112-95-8 57-10-3 57-11-4 791-28-6 629-94-7 7098-22-8	CAS Registry Number Risk Result Fl ₂ 625-86-5 4.1 589-38-8 591-78-6 2216-33-3 7.9 100-52-7 112-40-3 629-50-5 629-59-4 8.6 629-62-9 15 126-73-8 23 294-62-2 20 629-78-7 5.5 112-95-8 57-10-3 5.4 57-11-4 3.6 791-28-6 629-94-7 7098-22-8	CAS Registry Number Composite (μg) Composite (μg) Risk Result Flag ⁵ Risk Result Flag ⁵ Risk Result Flag ⁵ 625-86-5 4.1 589-38-8 190 591-78-6 230 2216-33-3 7.9 100-52-7 1,100 112-40-3 67 629-50-5 20 629-59-4 8.6 126-73-8 23 294-62-9 15 126-73-8 23 294-62-2 20 57-10-3 5.4 57-11-4 3.6 791-28-6 629-94-7 7098-22-8	CAS Registry Number Composite¹ (μg) Composite² (μg) Risk Result Flag⁵ Risk Result Flag⁵ 625-86-5 4.1 9.5 589-38-8 190 591-78-6 230 100-52-7 1,100 112-40-3 67 629-50-5 20 629-59-4 8.6 629-62-9 15 126-73-8 23 294-62-2 20 11 629-78-7 5.5 3.4 112-95-8 2.0 57-10-3 5.4 57-11-4 3.6 791-28-6 8.7 <	CAS Registry Number Composite (μg) Composite (μg) Composite (μg) Composite (μg) Total (Total (μg)) 625-86-5 4.1 9.5 14 589-38-8 190 190 591-78-6 230 230 2216-33-3 7.9 7.9 100-52-7 1,100 1,100 112-40-3 67 20 629-50-5 20 20 629-62-9 15 15 15 126-73-8 23 23 294-62-2 20 11 31 629-78-7 5.5 3.4 8.9 112-95-8 2.0 2.0 57-10-3 5.4 8.7 5.4 57-11-4 3.6 8.7 8.7 629-94	CAS Registry Number Composite¹ (μg) Composite² (μg) Composite² (μg) Composite³ (μg) Totals⁴ (Total μg) 625-86-5 4.1 9.5 14 N,J,M 589-38-8 190 190 N,J,M 591-78-6 230 230 N,J,M 100-52-7 1,100 1,100 N,J,M 112-40-3 67 20 N,J,M 629-59-4 8.6 20 23 N,J,M 629-62-9 15 23 N,J,M 126-73-8 23 23 N,J,M 294-62-2 20 11 31 N,J,M 57-10-3 5.4 2.0 2.0 N,J,M 57-10-3 5.4 2.0 2.0 N,J,M 57-12-8-6 8.7 N,J,M 57-1

Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- ² The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- ³ The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- ⁴ The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total μg in the Front Half) + (Total μg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total μg in the MM-5 Sampling Train.

Therefore: $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$

The MM-5 Train Run Total (in Total μg) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - ♦ A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
 - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
 - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
 - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
 - An "A" qualifier indicates that this result is an Aldol-condensation product.
 - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- ⁸ Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

MM-5 Train Summary - Run 3 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

Field Sample Name:

MM-5 Train

Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg) Risk Result Flag ⁵		MM-5 Train Back Half Composite ² (μg) Risk Result Flag ⁵		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
Target Compound List							•••••••••••••••••••••••••••••••••••••••			
Acenaphthene	83-32-9	1.3	U	6.6	U	1.9	U	< 9.8		N
Acenaphthylene	208-96-8	1.3	U	6.6	U	1.6	U	< 9.5		N
Acetophenone	9[8-86-2	2.0	U	31	J	2.6	U	< 36	J	P
Aniline	62-53-3	2.5	U	94	U	18	U	< 110		N
Anthracene	120-12-7	1.3	U	6.6	U	1.6	U	< 9.5		N
Benzidine	92-87-5	100	U	500	U	66	U	< 670		N
Benzoic acid	65-85-0	100	U	2,500	Е	9.4	U	< 2,600	Е	P
Benzo(a)anthracene	56-55-3	2.2	U	7.6	U	1.7	U	< 12		N
Benzo(a)pyrene	50-32-8	2.6	U	130	U	1.8	U	< 130		N
Benzo(b)fluoranthene	205-99-2	3.7	U	290	U	4.2	U	< 300	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N
Benzo(g,h,i)perylene	191-24-2	7.3	U	160	U	2.1	U	< 170		N
Benzo(k)fluoranthene	207-08-9	5.5	U	420	U	2.9	U	< 430		N
Benzyl alcohol	100-51-6	92	U	470	U	4.2	U	< 570		N
bis(2-Chloroethoxy)methane	111-91-1	1.5	U	6.6	U	2.0	U	< 10		N
bis(2-Chloroethyl)ether	111-44-4	2.0	U	7.3	U	1.7	U	< 11		N
bis(2-Ethylhexyl)phthalate	117-81-7	49		100	U	68		< 220	,,,,,	P
4-Bromophenyl-phenylether	101-55-3	1.4	U	6.6	U	1.4	U	< 9.4		N
Butylbenzylphthalate	85-68-7	2.9	U	7.9	U	2.3	U	< 13		N
Carbazole	86-74-8	2.0	U	8.4	U	2.2	U	< 13		N
4-Chloro-3-methylphenol	59-50-7	2.6	U	8.1	U	6.6	U	< 17		N
4-Chloroaniline	106-47-8	3.1	U	79	U	7.9	U	< 90		N
2-Chloronaphthalene	91-58-7	1.3	U	6.6	U	1.4	U	< 9.3		N
2-Chlorophenol	95-57-8	2.6	U	6.6	U	1.7	U	< 11		N
4-Chlorophenyl phenyl ether	7005-72-36	1.3	U	6.6	U	3.1	U	< 11		N
Chrysene	218-01-9	2.3	U	8.4	U	1.3	U	< 12		N

MM-5 Train Summary - Run 3 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

	CAS Registry	MM-5 Train Front Half Composite¹ (μg) Risk Result Flag ⁵ I		MM-5 Train Back Half Composite ² (μg) Risk Result Flag ⁵		MM-5 Train Condensate Composite ³		MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
	04.74.3	1.0	J	100	U	2.3	U	< 100	J	P
Di-n-butylphthalate	84-74-2	1.9	J	150	U	2.5	J	< 160	J	P
Di-n-octylphthalate	117-84-0	8.4			U	2.9	U	< 170	J	N
Dibenz(a,h)anthracene	53-70-3	5.2	U	160	U	2.9	U	< 11		N
Dibenzofuran	132-64-9	1.4	U	6.6			U	< 11		N
1,2-Dichlorobenzene	95-50-1	2.2	U	6.8	U	1.7		< 12		N
1,3-Dichlorobenzene	541-73-1	3.1	U	7.3	U	1.4	U		ī	P
1,4-Dichlorobenzene	106-46-7	2.9	U	6.8	J	2.0	U	< 12	J	
3,3'-Dichlorobenzidine	91-94-1	7.1	U	97	U	7.9	U	< 110		N
2,4-Dichlorophenol	120-83-2	3.9	U	6.6	U	2.3	U	< 13		N
Diethylphthalate	84-66-2	3.9	U	9.4	U	1.4	U	< 15	<u> </u>	N
Dimethyl phthalate	131-11-3	1.7	U	6.6	U	1.3	U	< 9.6		N
2,4-Dimethylphenol	105-67-9	7.6	U	50	U	1.5	U	< 59		N
4,6-Dinitro-2-methylphenol	534-52-1	13	U	120	U	1.5	U	< 130		N
2,4-Dinitrophenol	51-28-5	16	U	250	U	3.9	U	< 270		N
2,4-Dinitrotoluene	121-14-2	4.2	U	6.6	U	2.6	U	< 13		N
2,6-Dinitrotoluene	606-20-2	3.4	U	6.6	U	2.1	U	< 12		N
1,2-Diphenylhydrazine	122-66-7	1.7	U	6.6	U	1.5	U	< 9.8		N
Fluoranthene	206-44-0	1.3	U	7.1	U	1.8	U	< 10		N
Fluorene	86-73-7	1.3	U	6.6	U	2.6	U	< 10		N
Hexachlorocyclopentadiene	77-47-4	26	U	130	U	6.6	U	< 160		N
Hexachlorobenzene	118-74-1	1.5	U	6.6	U	2.6	U	< 11		N
Hexachlorobutadiene	87-68-3	3.7	U	9.7	U	1.9	U	< 15		N
Hexachloroethane	67-72-1	6.6	U	7.1	U	1.9	U	< 16		N
Indeno(1,2,3-cd)pyrene	193-39-5	5.5	U	140	U	2.3	U	< 150		N
Isophorone	78-59-1	1.7	U	6.6	U	1.8	U	< 10		N
2-Methylnaphthalene	91-57 - 6	1.5	U	6.6	U	2.3	U	< 10		N
2-Methylphenol	95-48-7	6.0	U	39	U	2.1	U	< 47		N
3-Methylphenol & 4-Methylphenol	65794-96-9	6.0	U	26	U	2.2	U	< 34		N

MM-5 Train Summary - Run 3 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

	CAS Registry	MM-5 Train Front Half Composite (µg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag	Risk Result	Flag	Total ⁶	Flag	Flag ⁷
N-Nitroso-di-n-propylamine	621-64-7	1.9	U	6.6	U	2.3	U	< 11		N
N-Nitrosodimethylamine	62-75-9	1.9	U	6.6	U	2.2	U	< 11		N
N-Nitrosodiphenylamine	86-30-6	1.6	U	12	U	1.4	U	< 15		N
Naphthalene	91-20-3	1.3	Ų	7.9	U	1.8	U	< 11		N
2-Nitroaniline	88-74-4	1.5	U	6.6	U	2.9	U	< 11		N
3-Nitroaniline	99-09-2	10	U	26	U	4.7	U	< 41		N
4-Nitroaniline	100-01-6	6.0	U	26	U	3.9	U	< 36		N
Nitrobenzene	98-95-1	1.9	U	11	J	1.7	U	< 15	J	P
2-Nitrophenol	88-75-5	8.4	U	30	J	2.6	U	< 41	J	P
4-Nitrophenol	100-02-7	8.7	U	42	U	3.9	U	< 55		N
2,2'-Oxybis(1-chloropropane) 8	108-60-1	2.6	U	10	U	1.8	U	< 14		N
Pentachlorobenzene	608-93-5	1.4	U	6.6	U	2.3	U	< 10		N
Pentachloronitrobenzene	82-68-8	2.0	U	6.6	U	2.6	U	< 11		N
Pentachlorophenol	87-86-5	50	U	250	U	3.4	U	< 300		N
Phenanthrene	85-01-8	1.3	U	6.6	U	1.9	U	< 9.8		N
Phenol	108-95-2	2.9	U	32	J	2.2	J	< 37	J	P
Pyrene	129-00-0	1.9	U	6.8	U	1.4	U	< 10		N
Pyridine	110-86-1	2.3	U	9.7	U	5.2	U	< 17		N
1,2,4,5-Tetrachlorobenzene	95-94-3	2.3	U	6.6	U	2.2	U	< 11		N
1,2,4-Trichlorobenzene	120-82-1	1.9	U	7.9	U	2.2	U	< 12		N
2,4,5-Trichlorophenol	95-95-4	6.0	Ų	17	U	2.1	U	< 25		N
2,4,6-Trichlorophenol	88-06-2	3.7	U	10	U	2.5	U	< 16		N

MM-5 Train Summary - Run 3 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-2. HLLWE Run ID: 0010-END-1

	CAS Registry	MM-5 Train Front Half Composite ¹ (µg)	Front Half Back Half Composite Composite (μg) (μg)		MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result Flag ⁵		Risk Result Flag ⁵	Total ⁶	Flag	Flag ⁷
TICs ⁹							
Furan, 2,5-dimethyl-	625-86-5	4.7		3.1	7.8	N,J,M	Р
3-Hexanone	589-38-8		96		96	N,J,M	P
2-Hexanone	591-78-6		120		120	N,J,M	P
Heptane, 2,3-dimethyl-	3074-71-3	9.9			9.9	N,J,M	P
Benzaldehyde	100-52-7		740		740	N,J,M	Р
Formic acid, phenylmethyl ester	104-57-4		72		72	N,J,M	P
Benzaldehyde, 4-ethyl-	4748-78-1		57		57	N,J,M	Р
Dodecane	112-40-3		48		48	N,J,M	P
Tridecane	629-50-5		21		21	N,J,M	P
2,4-Hexadiene	592-46-1		45		45	N,J,M	P
2,4-Hexadiene	592-46-1		110		110	N,J,M	Р
Tetradecane	629-59-4		96		96	N,J,M	P
Phosphoric acid tributyl ester	126-73-8	16			16	N,J,M	P
Cyclododecane	294-62-2	24		6.5	30	N,J,M	P
Heptadecane	629-78-7	4.0			4.0	N,J,M	P
Octadecanoic acid	57-11-4	2.0			2.0	N,J,M	Р

Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Ringes
- The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- ³ The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total µg in the Front Half) + (Total µg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total µg in the MM-5 Sampling Train.

Therefore: $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$

The MM-5 Train Run Total (in Total μg) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- ♦ When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- ⁵ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - ♦ A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
 - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
 - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
 - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
 - An "A" qualifier indicates that this result is an Aldol-condensation product.
 - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

MM-5 Train Summary - Run 2 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

Field Sample Name:

MM-5 Train

.Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

	CAS Registry	MM-5 Train Front Half Composite (µg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag
T							w			
Target Compound List	83-32-9	1.3	U	6.6	U	8.0	J	< 16	J	P
Acenaphthene	208-96-8	1.3	U	6.6	U	7.6	J	< 16	J	Р
Acenaphthylene	9[8-86-2	2.0	U	32	J	7.9	U	< 42	J	Р
Acetophenone	62-53-3	2.5	U	94	U	55	U	< 150		N
Aniline	120-12-7	1.3	U	6.6	U	8.3	J	< 16	J	Р
Anthracene		100	U	500	U	200	U	< 800		N
Benzidine	92-87-5	100	U	2,200	E	29	U	< 2,300	Е	P
Benzoic acid	65-85-0		U	7.6	U	9.0	J	< 19	J	P
Benzo(a)anthracene	56-55-3	2.2		130	U	9.3	J	< 140	J	P
Benzo(a)pyrene	50-32-8	2.6	U		U	13	J	< 300	J	P
Benzo(b)fluoranthene	205-99-2	3.7	U	290	U	9.5	J	< 180	J	P
Benzo(g,h,i)perylene	191-24-2	7.3	U	160			J	< 430	J	P
Benzo(k)fluoranthene	207-08-9	5.5	U	420	U	9.0			J	N
Benzyl alcohol	100-51-6	92	U	470	U	12	U	< 570		N
bis(2-Chloroethoxy)methane	111-91-1	1.5	U	6.6	U	6.0	U	< 14	т.	
bis(2-Chloroethyl)ether	111-44-4	2.0	U	7.3	U	6.4	J	< 16	J	P
bis(2-Ethylhexyl)phthalate	117-81-7	16		100	J	16	J	< 130	J	A
4-Bromophenyl-phenylether	101-55-3	1.4	U	6.6	U	10	J	< 18	J	P
Butylbenzylphthalate	85-68-7	2.9	U	7.9	U	8.2	J	< 19	J	P
Carbazole	86-74-8	2.0	U	8.4	U	7.2	J	< 18	J	Р
4-Chloro-3-methylphenol	59-50-7	2.6	U	8.1	U	20	U	< 31		N
4-Chloroaniline	106-47-8	3.1	U	79	U	24	U	< 110		N
2-Chloronaphthalene	91-58-7	1.3	U	6.6	U	6.8	J	< 15	J	P
2-Chlorophenol	95-57-8	2.6	U	6.6	U	5.4	J	< 15	J	Р
4-Chlorophenyl phenyl ether	7005-72-36	1.3	U	6.6	U	9.4	J	< 17	J	P
Chrysene	218-01-9	2.3	U	8.4	U	9.9	J	< 21	J	P

MM-5 Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

	CAS Registry	MM-5 To Front H Compos (µg)	alf	MM-5 Train Back Half Composite ² (µg) Risk Result Flag ⁵		MM-5 Train Condensate Composite ³ (µg)		MM-5 Tota (Tota	Project Specific	
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
	······································								T	n n
Di-n-butylphthalate	84-74-2	1.9	U	100	U	8.4	J	< 110	J	P
Di-n-octylphthalate	117-84-0	5.5	J	150	U	7.6	U	< 160	J	P
Dibenz(a,h)anthracene	53-70-3	5.2	U	160	U	8.4	J	< 170	J	P
Dibenzofuran	132-64-9	1.4	U	6.6	U	8.7	J	< 17	J	P
1,2-Dichlorobenzene	95-50-1	2.2	U	6.8	U	6.6	J	< 16	J	P
1,3-Dichlorobenzene	541-73-1	3.1	U	7.3	U	6.5	J	< 17	J	P
1,4-Dichlorobenzene	106-46-7	2.9	U	6.8	J	6.2	J	< 16	J	P
3,3'-Dichlorobenzidine	91-94-1	7.1	U	97	U	23	U .	< 130		N
2,4-Dichlorophenol	120-83-2	3.9	U	6.6	U	7.1	U	< 18		N
Diethylphthalate	84-66-2	3.9	U	9.4	U	8.9	J	< 22	J	Р
Dimethyl phthalate	131-11-3	1.7	U	6.6	U	8.1	J	< 16	J	Р
2,4-Dimethylphenol	105-67-9	7.6	U	50	U	4.7	U	< 62		N
4,6-Dinitro-2-methylphenol	534-52-1	13	U	120	U	4.5	U	< 140		N
2,4-Dinitrophenol	51-28-5	15	U	250	U	12	U	< 280		N
2,4-Dinitrotoluene	121-14-2	4.2	U	6.6	U	8.1	J	< 19	J	P
2,6-Dinitrotoluene	606-20-2	3.4	U	6.6	U	6.3	J	< 16	J	P
1,2-Diphenylhydrazine	122-66-7	1.7	U	6.6	U	7.5	J	< 16	J	P
Fluoranthene	206-44-0	1.3	U	7.1	U	8.5	J	< 17	J	P
Fluorene	86-73-7	1.3	U	6.6	U	8.4	J	< 16	J	P
Hexachlorocyclopentadiene	77-47-4	26	U	130	U	20	U	< 180		P
Hexachlorobenzene	118-74-1	1.5	U	6.6	U	8.3	J	< 16	J	P
Hexachlorobutadiene	87-68-3	3.7	U	9.7	U	6.5	J	< 20	J	P
Hexachloroethane	67-72-1	6.6	U	7.1	U	6.4	J	< 20	J	P
Indeno(1,2,3-cd)pyrene	193-39-5	5.5	U	140	U	7.0	J	< 150	J	P
Isophorone	78-59-1	1.7	U	6.6	U	7.4	J	< 16	J	P
2-Methylnaphthalene	91-57-6	1.5	U	6.6	U	6.8	J	< 15	J	P
2-Methylphenol	95-48-7	6.0	U	39	U	6.3	U	< 51		N
3-Methylphenol & 4-Methylphenol	65794-96-9	6.0	U	26	U	6.8	U	< 39		N

MM-5 Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

	CAS Registry	MM-5 Tr Front H Composi (μg)	alf	MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
N-Nitroso-di-n-propylamine	621-64-7	1.9	U	6.6	U	6.8	U	< 15		N
N-Nitrosodimethylamine	62-75-9	1.9	U	6.6	U	6.6	J	< 15	J	P
N-Nitrosodiphenylamine	86-30-6	1.6	U	12	U	7.6	J	< 21	J	P
Naphthalene	91-20-3	1.3	U	7.9	U	7.4	J	< 17	J	Р
2-Nitroaniline	88-74-4	1.5	U	6.6	U	8.4	U	< 17		N
3-Nitroaniline	99-09-2	10	U	26	U	14	U	< 50		N
4-Nitroaniline	100-01-6	6.0	U	26	U	12	U	< 44		N
Nitrobenzene	98-95-1	1.9	U	9.2	J	8.8	J	< 20	J	P
2-Nitrophenol	88-75-5	8.4	U	21	J	7.9	J	< 37	J	Р
4-Nitrophenol	100-02-7	8.7	U	42	U	12	U	< 63		N
2,2'-Oxybis(1-chloropropane) ⁸	108-60-1	2.6	U	10	U	9.7	J	< 22	J	P
Pentachlorobenzene	608-93-5	1.4	U	6.6	U	6.8	U	< 15		N
Pentachloronitrobenzene	82-68-8	2.0	U	6.6	U	7.9	U	< 16		N
Pentachlorophenol	87-86 - 5	50	U	250	U	10	U	< 310		N
Phenanthrene	85-01-8	1.3	U	6.6	U	8.6	J	< 17	J	Р
Phenol	108-95-2	2.9	U	23	J	7.4	J	< 33	J	P
Pyrene	129-00-0	1.9	U	6.8	U	9.4	J	< 18	J	P
Pyridine	110-86-1	2.3	U	9.7	U	16	U	< 28		N
1,2,4,5-Tetrachlorobenzene	95-94-3	2.3	U	6.6	U	6.6	U	< 16		N
1,2,4-Trichlorobenzene	120-82-1	1.9	U	7.9	U	7.4	J	< 17	J	P
2,4,5-Trichlorophenol	95-95-4	6.0	U	17	U	6.3	U	< 29		N
2,4,6-Trichlorophenol	88-06-2	3.7	U	10	U	7.6	U	< 21		N

MM-5 Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-3. HLLWE Run ID: 0010-STRT-2

	CAS Registry	MM-5 Train Front Half Composite ¹ (µg)	MM-5 Train Back Half Composite ² (μg)	MM-5 Train Condensate Composite ³ (μg)	MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result Flag	Risk Result Flag ⁵	Risk Result Flag ⁵	Total ⁶	Flag	Flag ⁷
TICs ⁹							
Furan, 2,5-dimethyl-	625-86-5	9.8			9.8	N,J,M	Р
3-Hexanone	589-38-8		96		96	N,J,M	P
Heptane, 2,5-dimethyl-	2216-30-0	7.1			7.1	N,J,M	Р
Benzaldehyde	100-52-7		670		670	N,J,M	P
Formic acid, phenylmethyl este	104-57-4		52		52	N,J,M	Р
Dodecane	112-40-3		55		55	N,J,M	P
Tridecane	629-50-5		18		18	N,J,M	Р
Naphthalene, 1-methyl-	90-12-0			7.8	7.8	N,J,M	Р
Tetradecane	629-59-4		56		56	N,J,M	Р
Cyclododecane	294-62-2	5.6			5.6	N,J,M	P
Hexanedioic acid, bis(2-ethylh)	103-23-1			10	10	N,J,M	P
1,2-Benzenedicarboxylic acid,	1330-96-7			8.4	8.4	N,J,M	P
Benzo(e)pyrene	192-97-2			14	14	N,J,M	Р

Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- ³ The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total μg in the Front Half) + (Total μg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total μg in the MM-5 Sampling Train.

Therefore: $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$

The MM-5 Train Run Total (in Total μg) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - ♦ A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
 - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
 - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
 - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
 - An "A" qualifier indicates that this result is an Aldol-condensation product.
 - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
 - A "Q" qualifier indicates that this result was quantitated against the response factor of a calibration standard.
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- ⁸ Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

MM-5 Train Summary - Run 4 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

Field Sample Name:

MM-5 Train

Sample Description:

MM-5 Train Totals for Semivolatile Organic Compounds Analysis

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg) Risk Result Flag ⁵ I		MM-5 Train Back Half Composite ² (µg)		MM-5 Tr Condens Compos (μg)	ate ite ³	MM-5 Tota (Tota	Project Specific	
Analyte	Number		Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
Target Compound List				-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Acenaphthene	83-32-9	1.3	U	6.6	U	1.9	U	< 9.8		N
Acenaphthylene	208-96-8	1.3	U	6.6	U	1.6	U	< 9.5		N
Acetophenone	9[8-86-2	2.0	U	32	J	2.6	U	< 37	J	P
Aniline	62-53-3	2.5	U	94	U	18	U	< 110		N
Anthracene	120-12-7	1.3	U	6.6	U	1.6	U	< 9.5		N
Benzidine	92-87-5	100	U	500	U	66	U	< 670		N
Benzoic acid	65-85-0	100	U	2,600	Е	9.4	U	< 2,700	Е	Р
Benzo(a)anthracene	56-55-3	2.2	U	7.6	U	1.7	U	< 12		N
Benzo(a)pyrene	50-32-8	2.6	U	130	U	1.8	U	< 130		N
Benzo(b)fluoranthene	205-99-2	3.7	U	290	U	4.2	U	< 300		N
Benzo(g,h,i)perylene	191-24-2	7.3	U	160	U	2.1	U	< 170		N
Benzo(k)fluoranthene	207-08-9	5.5	U	420	U	2.9	U	< 430		N
Benzyl alcohol	100-51-6	92	U	470	U	4.2	U	< 570		N
bis(2-Chloroethoxy)methane	111-91-1	1.5	U	6.6	U	2.0	U	< 10		N
bis(2-Chloroethyl)ether	111-44-4	2.0	U	7.3	U	1.7	U	< 11		N
bis(2-Ethylhexyl)phthalate	117-81-7	57		100	J	6.1	J	< 160	J	A
4-Bromophenyl-phenylether	101-55-3	1.4	U	6.6	U	1.4	U	< 9.4		N
Butylbenzylphthalate	85-68-7	2.9	U	7.9	U	2.3	U	< 13		N
Carbazole	86-74-8	2.0	U	8.4	U	2.2	U	< 13		N
4-Chloro-3-methylphenol	59-50-7	2.6	U	8.1	U	6.6	U	< 17		N
4-Chloroaniline	106-47-8	3.1	U	79	U	7.9	U	< 90		N
2-Chloronaphthalene	91-58-7	1.3	U	6.6	U	1.4	U	< 9.3		N
2-Chlorophenol	95-57-8	2.6	U	6.6	U	1.7	U	< 11		N
4-Chlorophenyl phenyl ether	7005-72-36	1.3	U	6.6	U	3.1	U	< 11		N
Chrysene	218-01-9	2.3	U	8.4	U	1.3	U	< 12		N

MM-5 Train Summary - Run 4 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg) Risk Result Flag ⁵		MM-5 Train Back Half Composite ² (μg) Risk Result Flag ⁵		MM-5 Train Condensate Composite ³ (µg)		MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
				100		2.2	r r	~ 100	J	P
Di-n-butylphthalate	84-74-2	1.9	J	100	U	2.3	U	< 100	-	P P
Di-n-octylphthalate	117-84-0	5.5	J	150	U	2.5	J	< 160	J	N
Dibenz(a,h)anthracene	53-70-3	5.2	U	160	U	2.9	U	< 170		
Dibenzofuran	132-64-9	1.4	U	6.6	U	2.9	U	< 11		N
1,2-Dichlorobenzene	95-50-1	2.2	U	6.8	U	1.7	U	< 11		N
1,3-Dichlorobenzene	541-73-1	3.1	U	7.3	U	1.4	U	< 12		N
1,4-Dichlorobenzene	106-46-7	2.9	U	16	J	2.0	U	< 21	J	P
3,3'-Dichlorobenzidine	91-94-1	7.1	U	97	U	7.9	U	< 110		N
2,4-Dichlorophenol	120-83-2	3.9	U	6.6	U	2.3	U	< 13		N
Diethylphthalate	84-66-2	3.9	U	9.4	U	1.4	U	< 15		N
Dimethyl phthalate	131-11-3	1.7	U	6.6	U	1.3	U	< 9.6		N
2,4-Dimethylphenol	105-67-9	7.6	U	50	U	1.5	U	< 59		N
4,6-Dinitro-2-methylphenol	534-52-1	13	U	120	U	1.5	U	< 130		N
2,4-Dinitrophenol	51-28-5	16	U	250	U	3.9	U	< 270		N
2,4-Dinitrotoluene	121-14-2	4.2	U	6.6	U	2.6	U	< 13		N
2,6-Dinitrotoluene	606-20-2	3.4	Ų	6.6	U	2.1	U	< 12		N
1,2-Diphenylhydrazine	122-66-7	1.7	U	6.6	U	1.5	U	< 9.8		N
Fluoranthene	206-44-0	1.3	U	7.1	U	1.8	U	< 10		N
Fluorene	86-73-7	1.3	U	6.6	U	2.6	U	< 10		N
Hexachlorocyclopentadiene	77-47-4	26	U	130	U	6.6	U	< 160	1	N
Hexachlorobenzene	118-74-1	1.5	U	6.6	U	2.6	U	< 11		N
Hexachlorobutadiene	87-68-3	3.7	U	9.7	U	1.9	U	< 15		N
Hexachloroethane	67-72-1	6.6	U	7.1	U	1.9	U	< 16		N
Indeno(1,2,3-cd)pyrene	193-39-5	5.5	U	140	U	2.3	U	< 150		N
Isophorone	78-59-1	1.7	U	6.6	U	1.8	U	< 10		N
2-Methylnaphthalene	91-57-6	1.5	U	6.6	U	2.3	U	< 10		N
2-Methylphenol	95-48-7	6.0	U	39	U	2.1	U	< 47		N
3-Methylphenol & 4-Methylphenol	65794-96-9	6.0	U	26	U	2.2	U	< 34		N

MM-5 Train Summary - Run 4 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵		Flag ⁵	Total ⁶	Flag	Flag ⁷
N-Nitroso-di-n-propylamine	621-64-7	1.9	U	6.6	U	2.3	U	< 11		N
N-Nitrosodimethylamine	62-75-9	1.9	U	6.6	U	2.2	U	< 11		N
N-Nitrosodiphenylamine	86-30-6	1.6	U	12	U	1.4	U	< 15		N
Naphthalene	91-20-3	1.3	U	7.9	U	1.8	U	< 11		N
2-Nitroaniline	88-74-4	1.5	U	6.6	U	2.9	U	< 11		N
3-Nitroaniline	99-09-2	10	U	26	U	4.7	U	< 41		N
4-Nitroaniline	100-01-6	6.0	U	26	U	3.9	U	< 36		N
Nitrobenzene	98-95-1	1.9	U	8.5	J	1.7	U	< 12	J	Р
2-Nitrophenol	88-75-5	8.4	U	40	J	2.6	U	< 51	J	P
4-Nitrophenol	100-02-7	8.7	U	42	J	3.9	U	< 55	J	Р
2,2'-Oxybis(1-chloropropane) ⁸	108-60-1	2.6	U	10	U	1.8	U	< 14		N
Pentachlorobenzene	608-93-5	1.4	U	6.6	U	2.3	U	< 10		N
Pentachloronitrobenzene	82-68-8	2.0	U	6.6	U	2.6	U	< 11		N
Pentachlorophenol	87-86-5	50	U	320	U	3.4	U	< 370		N
Phenanthrene	85-01-8	1.3	U	6.6	U	1.9	U	< 9.8		N
Phenol	108-95-2	2.9	U	34	J	2.2	J	< 39	J	P
Pyrene	129-00-0	1.9	U	6.8	U	1.4	U	< 10		N
Pyridine	110-86-1	2.3	U	9.7	U	5.2	U	< 17		N
1,2,4,5-Tetrachlorobenzene	95-94-3	2.3	U	6.6	U	2.2	U	< 11		N
1,2,4-Trichlorobenzene	120-82-1	1.9	U	7.9	U	2.2	U	< 12		N
2,4,5-Trichlorophenol	95-95-4	6.0	U	17	U	2.1	U	< 25		N
2,4,6-Trichlorophenol	88-06-2	3.7	U	10	U	2.5	U	< 16		N

MM-5 Train Summary - Run 4 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-4. HLLWE Run ID: 0010-END-2

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)	MM-5 Train Back Half Composite ² (μg)	MM-5 Train Condensate Composite ³ (μg)	MM-5 Tota (Tota	als ⁴	Project Specific
Analyte	Number	Risk Result Flag ⁵	Risk Result Flag ⁵	Risk Result Flag ⁵	Total ⁶	Flag	Flag ⁷
TICs ⁹							
3-Hexanone	589-38-8		70		70	N,J,M	P
Benzaldehyde	100-52-7		730		730	N,J,M	P
2-Cyclohexene-1-one, 3-methyl-	1193-18-6			3.2	3.2	N,J,M	P
Formic acid, phenylmethyl ester	104-57-4		95		95	N,J,M	P
Benzaldehyde, ethyl-	53951-50-1		61		61	N,J,M	Р
Dodecane	112-40-3		37		37	N,J,M	Р
Tridecane	629-50-5		21		21	N,J,M	P
2,4-Hexadiene	592-46-1		28		28	N,J,M	P
2,5-Diethylphenol	876-20-0		100		100	N,J,M	Р
Tetradecane	629-59-4		99		99	N,J,M	Р
Hexatriacontane	630-06-8	5.7			5.7	N,J,M	P
Phosphoric acid tributyl ester	126-73-8	24			24	N,J,M	P
Cyclododecane	294-62-2	13			13	N,J,M	Р
Pentadecane	629-62-9	4.5			4.5	N,J,M	P
Heneicosane	629-94-7	9.1			9.1	N,J,M	P
Tetracosane	646-31-1	19			19	N,J,M	P
Pentacosane	629-99-2	35			35	N,J,M	Р
Hexacosane	630-01-3	64			64	N,J,M	Р
Heptacosane	593-49-7	83			83	N,J,M	Р
Pentacosane	629-99-2			2.2	2.2	N,J,M	P
Hexatriacontane	630-06-8	100			100	N,J,M	P
Hexatriacontane	630-06-8	67			67	N,J,M	P
Hexatriacontane	630-06-8	32			32	N,J,M	P
Eicosane	112-95-8	19			19	N,J,M	P
Tetracosane	646-31-1	7.4			7.4	N,J,M	P

Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- ² The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- ³ The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total µg in the Front Half) + (Total µg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total µg in the MM-5 Sampling Train.

Therefore: $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$

The MM-5 Train Run Total (in Total μ g) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- ♦ When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- ♦ It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
 - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
 - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
 - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
 - An "A" qualifier indicates that this result is an Aldol-condensation product.
 - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- ⁸ Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

MM-5 Blank Train Summary - Run 2 Train Totals Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

Field Sample Name:

MM-5 Blank Train

Sample Description:

MM-5 Blank Train Totals for Semivolatile Organic Compounds Analysis

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
Target Compound List										
Acenaphthene	83-32-9	1.3	U	1.3	U	1.9	U	< 4.5		N
Acenaphthylene	208-96-8	1.3	U	1.3	U	1.6	U	< 4.2		N
Acetophenone	9[8-86-2	2.0	U	6.3	J	2.6	U	< 11	J	P
Aniline	62-53-3	2.5	U	19	U	18	U	< 40		N
Anthracene	120-12-7	1.3	U	1.3	U	1.6	U	< 4.2		N
Benzidine	92-87-5	100	U	100	U	66	U	< 270		N
Benzoic acid	65-85-0	100	U	100	U	9.4	U	< 210		N
Benzo(a)anthracene	56-55-3	2.2	U	1.5	U	1.7	U	< 5.4		N
Benzo(a)pyrene	50-32-8	2.6	U	1.3	U	1.8	U	< 5.7		N
Benzo(b)fluoranthene	205-99-2	3.7	U	2.9	U	4.2	U	< 11		N
Benzo(g,h,i)perylene	191-24-2	7.3	U	1.6	U	2.1	U	< 11		N
Benzo(k)fluoranthene	207-08-9	5.5	U	4.2	U	2.9	U	< 13	<u>.</u>	N
Benzyl alcohol	100-51-6	92	U	92	U	4.2	U	< 190		N
bis(2-Chloroethoxy)methane	111-91-1	1.5	U	1.3	U	2.0	U	< 4.8		N
bis(2-Chloroethyl)ether	111-44-4	2.0	U	1.5	U	1.7	U	< 5.2		N
bis(2-Ethylhexyl)phthalate	117-81-7	15		99		15		130		A
4-Bromophenyl-phenylether	101-55-3	1.4	U	1.3	U	1.4	U	< 4.1		N
Butylbenzylphthalate	85-68-7	2.9	U	1.6	U	2.3	U	< 6.8		N
Carbazole	86-74-8	2.0	U	1.7	U	2.2	U	< 5.9		N
4-Chloro-3-methylphenol	59-50-7	2.6	U	1.6	U	6.6	U	< 11		N
4-Chloroaniline	106-47-8	3.1	U	16	U	7.9	U	< 27		N
2-Chloronaphthalene	91-58-7	1.3	U	1.3	U	1.4	U	< 4.0		N
2-Chlorophenol	95-57-8	2.6	U	1.3	U	1.7	U	< 5.6		N
4-Chlorophenyl phenyl ether	7005-72-36	1.3	U	1.3	U	3.1	U	< 5.7		N
Chrysene	218-01-9	2.3	U	1.7	U	1.3	U	< 5.3		N

MM-5 Blank Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total μg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Risk Result	Flag ⁵	Total ⁶	Flag	Flag ⁷
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							-	
Di-n-butylphthalate	84-74-2	1.9	J	20	U	2.3	J	< 24	J	P
Di-n-octylphthalate	117-84-0	5.5	J	10		3.3	J	< 19	J	A
Dibenz(a,h)anthracene	53-70-3	5.2	U	1.6	U	2.9	U	< 9.7		N
Dibenzofuran	132-64-9	1.4	U	1.3	U	2.9	U	< 5.6		N
1,2-Dichlorobenzene	95-50-1	2.2	U	1.3	U	1.7	U	< 5.2		N
1,3-Dichlorobenzene	541-73-1	3.1	U	1.5	U	1.4	U	< 6.0		N
1,4-Dichlorobenzene	106-46-7	2.9	U	12		2.0	U	< 17		P
3,3'-Dichlorobenzidine	91-94-1	7.1	U	19	U	7.9	U	< 34		N
2,4-Dichlorophenol	120-83-2	3.9	U	1.3	U	2.3	U	< 7.5		N
Diethylphthalate	84-66-2	3.9	U	1.9	U	1.4	U	< 7.2		N
Dimethyl phthalate	131-11-3	1.7	U	1.3	U	1.3	U	< 4.3		N
2,4-Dimethylphenol	105-67-9	7.6	U	10	U	1.5	U	< 19		N
4,6-Dinitro-2-methylphenol	534-52-1	13	U	23	U	1.5	U	< 38		N
2,4-Dinitrophenol	51-28-5	15	U	50	U	3.9	U	< 69		N
2,4-Dinitrotoluene	121-14-2	4.2	U	1.3	U	2.6	U	< 8.1		N
2,6-Dinitrotoluene	606-20-2	3.4	U	1.3	U	2.1	U	< 6.8		N
1,2-Diphenylhydrazine	122-66-7	1.7	U	1.3	U	1.5	U	< 4.5		N
Fluoranthene	206-44-0	1.3	U	1.4	U	1.8	U	< 4.5		N
Fluorene	86-73-7	1.3	U	1.3	U	2.6	U	< 5.2		N
Hexachlorocyclopentadiene	77-47-4	26	U	26	U	6.6	U	< 59		N
Hexachlorobenzene	118-74-1	1.5	U	1.3	U	2.6	U	< 5.4		N
Hexachlorobutadiene	87-68-3	3.7	U	1.9	U	1.9	U	< 7.5		N
Hexachloroethane	67-72-1	6.6	U	1.4	U	1.9	U	< 9.9		N
Indeno(1,2,3-cd)pyrene	193-39-5	5.5	U	1.4	U	2.3	U	< 9.2		N
Isophorone	78-59-1	1.7	U	1.3	U	1.8	U	< 4.8		N
2-Methylnaphthalene	91-57 - 6	1.5	U	1.3	U	2.3	U	< 5.1		N
2-Methylphenol	95-48-7	6.0	U	7.9	U	2.1	U	< 16		N
3-Methylphenol & 4-Methylphenol	65794-96-9	6.0	U	5.2	U	2.2	U	< 13		N

MM-5 Blank Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)		MM-5 Train Back Half Composite ² (μg)		MM-5 Train Condensate Composite ³ (μg)		MM-5 Train Totals ⁴ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁵	Risk Result	Flag ⁵		Flag ⁵	Total ⁶	Flag	Flag ⁷
N-Nitroso-di-n-propylamine	621-64-7	1.9	U	1.3	U	2.3	U	< 5.5		N
N-Nitrosodimethylamine	62-75-9	1.9	U	1.3	U	2.2	U	< 5.4		N
N-Nitrosodiphenylamine	86-30-6	1.6	U	2.3	U	1.4	U	< 5.3		N
Naphthalene	91-20-3	1.3	U	1.6	J	1.8	U	< 4.7	J	Р
2-Nitroaniline	88-74-4	1.5	U	1.3	U	2.9	U	< 5.7		N
3-Nitroaniline	99-09-2	10	U	5.2	U	4.7	U	< 20		N
4-Nitroaniline	100-01-6	6.0	U	5.2	U	3.9	U	< 15		N
Nitrobenzene	98-95-1	1.9	U	1.5	U	1.7	U	< 5.1		N
2-Nitrophenol	88-75-5	8.4	U	1.3	U	2.6	U	< 12		N
4-Nitrophenol	100-02-7	8.7	U	8.7	U	3.9	U	< 21		N
2,2'-Oxybis(1-chloropropane) 8	108-60-1	2.6	U	2.0	U	1.8	U	< 6.4		N
Pentachlorobenzene	608-93-5	1.4	U	1.3	U	2.3	U	< 5.0	·	N
Pentachloronitrobenzene	82-68-8	2.0	U	1.3	U	2.6	U	< 5.9		N
Pentachlorophenol	87-86-5	50	U	50	U	3.4	U	< 100		N
Phenanthrene	85-01-8	1.3	U	1.3	U	1.9	U	< 4.5		N
Phenol	108-95-2	2.9	U	2.4	U	2.2	U	< 7.5		N
Pyrene	129-00-0	1.9	U	1.4	U	1.4	U	< 4.7		N
Pyridine	110-86-1	2.3	U	1.9	U	5.2	U	< 9.4		N
1,2,4,5-Tetrachlorobenzene	95-94-3	2.3	U	1.3	U	2.2	U	< 5.8		N
1,2,4-Trichlorobenzene	120-82-1	1.9	U	1.5	U	2.2	U	< 5.6		N
2,4,5-Trichlorophenol	95-95-4	6.0	U	3.4	U	2.1	U	< 12		N
2,4,6-Trichlorophenol	88-06-2	3.7	U	2.0	U	2.5	U	< 8.2		N

MM-5 Blank Train Summary - Run 2 Train Totals (Continued) Semivolatile Organic Compounds Analytical Results Summary Table A-5. HLLWE Run ID: 0010-BT-1

	CAS Registry	MM-5 Train Front Half Composite ¹ (μg)	MM-5 Train Back Half Composite ² (µg)	MM-5 Train Condensate Composite ³ (μg)	Tot (Tota	ıl μg)	Project Specific
Analyte	Number	Risk Result Flag ⁵	Risk Result Flag	Risk Result Flag ⁵	Total ⁶	Flag	Flag ⁷
TICs ⁹			The state of the s				
Furan, 2,5-dimethyl-	625-86-5	12			12	N,J,M	P
Heptane, 2,5-dimethyl-	2216-30-0	9.0			9.0	N,J,M	P
Heptane, 2,3-dimethyl-	3074-71-3	11			11	N,J,M	Р
Benzaldehyde	100-52-7		7.3		7.3	N,J,M	Р
Benzoic acid, methyl ester	93-58-3		8.4		8.4	N,J,M	P
Benzaldehyde, ethyl-	53951-50-1		14		14	N,J,M	P
Pentadecane	629-62-9	4.4			4.4	N,J,M	Р
Cyclododecane	294-62-2	11	8.7	10	30	N,J,M	P
Heptadecane	629-78-7	3.0	4 -		3.0	N,J,M	P
Eicosane	112-95-8			3.7	3.7	N,J,M	P
Heneicosane	629-94-7		4.5		4.5	N,J,M	P
Octodecane	593-45-3		10		10	N,J,M	Р
Phosphine oxide, triphenyl-	791-28-6			26	26	N,J,M	P
Nonacosane	630-03-5		10		10	N,J,M	P
Eicosane	112-95-8		14		14	N,J,M	P
Hexatriacontane	630-06-8		23		23	N,J,M	P
Tetracosane	646-31-1		18		18	N,J,M	P
Heneicosane	629-94-7			3.6	3.6	N,J,M	Р
Tetratriacontane	14167-59-0		11		11	N,J,M	Р
Eicosane	112-95-8		9.2		9.2	N,J,M	Р

Footnotes:

- The MM-5 Train Front Half Composite consists of the Particulate Filter and the Front Half of the Filter Holder and Probe Solvent Rinses.
- The MM-5 Train Back Half Composite consists of the XAD-2 Resin Tube and the Back Half of the Filter Holder and Coil Condenser Solvent Rinses.
- ³ The MM-5 Train Condensate Composite consists of the Condensate and Impinger Contents and the Glassware Solvent Rinses.
- The total mass for each semivolatile compound found in the MM-5 sampling train consists of the sum of the MM-5 train's Front Half Composite contents, the train's Back Half Composite contents, and the Condensate Composite. The calculation is as follows:

(Total µg in the Front Half) + (Total µg in the Back Half) + (Concentration in the Condensate Composite x Condensate Composite Volume)

= Total µg in the MM-5 Sampling Train.

Therefore: $(\mu g) + (\mu g) + (\mu g/Liter \times Liter) = Total \mu g$

The MM-5 Train Run Total (in Total μg) is the sum of results for the three (3) MM-5 train sample fractions using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MM-5 Train Total are the cumulative set of flags for each train component included as part of the MM-5 train total. A flag attached to an MM-5 train component is carried through to the "MM-5 Train Total" column when the associated component analytical result is a significant number in comparison to the MM-5 Train Total. That is, if the MM-5 Train Total is affected by an MM-5 train component analytical result, the flag is carried through to the MM-5 Train Total, but if the MM-5 Train Total is not affected by an MM-5 train component, the flag is not carried through to the MM-5 Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- ⁵ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
 - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
 - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
 - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.
 - An "A" qualifier indicates that this result is an Aldol-condensation product.
 - An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- ⁸ Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

MM-5 Train Analytical Results Summary Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

Field Sample Name:

MM-5 Train XAD-2 Resin Tube Trip Blank/Reagent Blank

Sample Description:

MM-5 Train XAD-2 Resin Tube Trip Blank/Reagent Blank for Semivolatile Organic Compounds Analysis

Field Sample ID:

A-3378

STL Sample No.

H1F250162-007

	CAS Registry									
Analyte	Number	Lab Result ²	MDL ³	RDL⁴	RL ⁵	Risk Result	Flag ⁶			
Acenaphthene	83-32-9	ND	0.50	1.3	10	< 1.3				
Acenaphthylene	208-96-8	ND	0.50	1.3	10	< 1.3				
Acetophenone	98-86-2	2.7	2.4	6.3	10	6.3	J			
Aniline	62-53-3	ND	7.3	19	20	< 19				
Anthracene	120-12-7	ND	0.50	1.3	10	< 1.3				
Benzidine	92-87-5	ND	51	130	100	< 100				
Benzoic acid	65-85-0	ND	46	120	100	< 100				
Benzo(a)anthracene	56-55-3	ND	0.58	1.5	10	< 1.5				
Benzo(a)pyrene	50-32-8	ND	0.50	1.3	10	< 1.3				
Benzo(b)fluoranthene	205-99-2	ND	1.1	2.9	10	< 2.9				
Benzo(g,h,i)perylene	191-24-2	ND	0.62	1.6	10	< 1.6				
Benzo(k)fluoranthene	207-08-9	ND	1.6	4.2	10	< 4.2				
Benzyl alcohol	100-51-6	ND	35	92	100	< 92				
bis(2-Chloroethoxy)methane	111-91-1	ND	0.50	1.3	10	< 1.3				
bis(2-Chloroethyl)ether	111-44-4	ND	0.56	1.5	10	< 1.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
bis(2-Ethylhexyl)phthalate	117-81-7	ND	10	26	20	< 20				
4-Bromophenyl-phenylether	101-55-3	ND	0.50	1.3	10	< 1.3				
Butylbenzylphthalate	85-68-7	ND	0.61	1.6	10	< 1.6				
Carbazole	86-74-8	ND	0.64	1.7	10	< 1.7				
4-Chloro-3-methylphenol	59-50-7	ND	0.62	1.6	10	< 1.6				
4-Chloroaniline	106-47-8	ND	6.0	16	20	< 16				
2-Chloronaphthalene	91-58-7	ND	0.50	1.3	10	< 1.3				
2-Chlorophenol	95-57-8	ND	0.50	1.3	10	< 1.3				
4-Chlorophenyl phenyl ether	7005-72-36	ND	0.50	1.3	10	< 1.3				
Chrysene	218-01-9	ND	0.64	1.7	10	< 1.7				

MM-5 Train Analytical Results Summary (Continued) Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

	CAS Registry	gistry (μg) ¹									
Analyte	Number	Lab Result ²	MDL ³	RDL ⁴	RL ⁵	Risk Result	Flag ⁶				
Di-n-butylphthalate	84-74-2	ND	10	26	20	< 20					
Di-n-octylphthalate	117-84-0	ND	0.56	1.5	10	< 1.5					
Dibenz(a,h)anthracene	53-70-3	ND	0.60	1.6	10	< 1.6					
Dibenzofuran	132-64-9	ND	0.50	1.3	10	< 1.3					
1,2-Dichlorobenzene	95-50-1	ND	0.51	1.3	10	< 1.3					
1,3-Dichlorobenzene	541-73-1	ND	0.57	1.5	10	< 1.5					
1,4-Dichlorobenzene	106-46-7	9.0	0.53	1.4	10	9.0	J				
3,3'-Dichlorobenzidine	91-94-1	ND	7.4	19	50	< 19					
2,4-Dichlorophenol	120-83-2	ND	0.50	1.3	10	< 1.3					
Diethylphthalate	84-66-2	ND	0.73	1.9	10	< 1.9					
Dimethyl phthalate	131-11-3	ND	0.50	1.3	10	< 1.3					
2,4-Dimethylphenol	105-67-9	ND	6.3	16	10	< 10					
4,6-Dinitro-2-methylphenol	534-52-1	ND	8.7	23	50	< 23					
2,4-Dinitrophenol	51-28-5	ND	22	58	50	< 50					
2,4-Dinitrotoluene	121-14-2	ND	0.50	1.3	10	< 1.3	,				
2,6-Dinitrotoluene	606-20-2	ND	0.50	1.3	10	< 1.3					
1,2-Diphenylhydrazine	122-66-7	ND	0.50	1.3	10	< 1.3					
Fluoranthene	206-44-0	ND	0.54	1.4	10	< 1.4					
Fluorene	86-73-7	ND	0.50	1.3	10	< 1.3					
Hexachlorocyclopentadiene	77-47-4	ND	10	26	50	< 26	***************************************				
Hexachlorobenzene	118-74-1	ND	0.50	1.3	10	< 1.3					
Hexachlorobutadiene	87-68-3	ND	0.74	1.9	10	< 1.9					
Hexachloroethane	67-72-1	ND	0.54	1.4	10	< 1.4					
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.54	1.4	10	< 1.4					
Isophorone	78-59-1	ND	0.50	1.3	10	< 1.3					
2-Methylnaphthalene	91-57-6	ND	0.50	1.3	10	< 1.3					
2-Methylphenol	95-48-7	ND	3.0	7.9	10	< 7.9					
3-Methylphenol & 4-Methylphenol	65794-96-9	ND	2.0	5.2	10	< 5.2					

MM-5 Train Analytical Results Summary (Continued) Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

	CAS Registry	gistry (µg) 1									
Analyte	Number	Lab Result ²	MDL ³	RDL ⁴	RL ⁵	Risk Result	Flag ⁶				
N-Nitroso-di-n-propylamine	621-64-7	ND	0.50	1.3	10	< 1.3					
N-Nitrosodimethylamine	62-75-9	ND	0.50	1.3	10	< 1.3	***************************************				
N-Nitrosodiphenylamine	86-30-6	ND	0.87	2.3	10	< 2.3					
Naphthalene	91-20-3	ND	0.60	1.6	10	< 1.6					
2-Nitroaniline	88-74-4	ND	0.50	1.3	50	< 1.3	••••••				
3-Nitroaniline	99-09-2	ND	2.0	5.2	50	< 5.2					
4-Nitroaniline	100-01-6	ND	2.0	5.2	50	< 5.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Nitrobenzene	98-95-1	ND	0.57	1.5	10	< 1.5	•				
2-Nitrophenol	88-75-5	ND	0.50	1.3	10	< 1.3					
4-Nitrophenol	100-02-7	ND	3.3	8.7	50	< 8.7					
2,2'-Oxybis(1-chloropropane) ⁷	108-60-1	ND	0.76	2.0	10	< 2.0					
Pentachlorobenzene	608-93-5	ND	0.50	1.3	10	< 1.3					
Pentachloronitrobenzene	82-68-8	ND	0.50	1.3	50	< 1.3					
Pentachlorophenol	87-86-5	ND	25	66	50	< 50					
Phenanthrene	85-01-8	ND	0.50	1.3	10	< 1.3					
Phenol	108-95-2	ND	0.90	2.4	10	< 2.4					
Pyrene	129-00-0	ND	0.53	1.4	10	< 1.4					
Pyridine	110-86-1	ND	0.74	1.9	20	< 1.9					
1,2,4,5-Tetrachlorobenzene	95-94-3	ND	0.50	1.3	10	< 1.3					
1,2,4-Trichlorobenzene	120-82-1	ND	0.59	1.5	10	< 1.5					
2,4,5-Trichlorophenol	95-95-4	ND	1.3	3.4	10	< 3.4					
2,4,6-Trichlorophenol	88-06-2	ND	0.75	2.0	10	< 2.0	***************************************				

BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

MM-5 Train Analytical Results Summary (Continued) Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank

Sampling Surrogate Recoveries:

Sampling Surrogate Compound ⁸	Percent Recovery (%)	Project Target Recovery Limits (%)
¹³ C ₆ -Naphthalene	66%	50-150%

Surrogate Standard Recoveries:

Surrogate Standard Compound	Percent Recovery (%)	Laboratory Recovery Limits (%)
2-Fluorophenoi	55%	19-100%
Phenol- ds	61%	15-124%
Nitrobenzene-d ₅	63%	35-122%
2-Fluorobiphenyl	67%	34-115%
2,4,6-Tribromophenol	0.0%9	33-130%
Terphenyl-d ₁₄	84%	28-132%

Sample Collection and Analysis Dates:

Date(s) Collected:

June 21, 2001

Date(s) of Extraction:

June 26, 2001

Date(s) of Analysis:

July 02, 2001

Preparation and Analysis Methods:

SW-846 Method 0010:

"Modified Method 5 Sampling Train"

SW-846 Method 3542:

"Extraction of Semivolatile Analytes Collected Using Method 0010 (Modified Method 5 Sampling Train)"

SW-846 Method 8270C:

"Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Capillary Column Technique"

MM-5 Train Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank Tentatively Identified Compound (TIC) Summary

TICs ¹⁰	CAS Registry Number	Approximate Retention Time (min.)	Sample Result (µg)	TIC Flag
	100-52-7	3.60	5.3	N,J,M
Benzaldehyde			6.5	N,J,M
Benzoic acid, methyl ester	93-58-3	4.72		
Benzaldehyde, ethyl-	53951-50-1	5.40	4.6	N,J,M
Heptacosane	593-49-7	11.48	3.1	N,J,M
Heneicosane	629-94-7	11.73	5.8	N,J,M
Tetratracontane	7098-22-8	11.96	8.5	N,J,M
Hexatriacontane	630-06-8	12.19	8.9	N,J,M
Hexatriacontane	630-06-8	12.41	8.2	N,J,M
Heneicosane	629-94-7	12.64	14	N,J,M
Heptacosane	593-49-7	12.90	9.1	N,J,M

MM-5 Train Analytical Results Summary Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank (Continued)

Footnotes:

- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
 - When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - ♦ When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
 - When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
 - It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- ² This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- ⁵ The RL is the laboratory Reporting Limit (RL).
- ⁶ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "J" qualifier indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - A "B" qualifier indicates that this compound was found in the associated laboratory method blank. Under these conditions these values are regarded as estimated values.
 - A "D" qualifier indicates that this result was obtained through dilution of the sample. This original analysis yielded a result that exceeded the calibration range.
 - An "N" qualifier indicates that this compound is a tentatively identified compound (TIC). Therefore the value is estimated.
 - An "E" qualifier indicates that this compound exceeded the calibration range of the instrument.

MM-5 Train Analytical Results Summary Table A-6. Run 2, XAD-2 Resin Tube Trip Blank/Reagent Blank (Continued)

- An "A" qualifier indicates that this result is an Aldol-condensation product.
- An "M" qualifier indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- ⁷ Bis(2-chloroisopropyl)ether and 2,2'-Oxybis(1-chloropropane) are synonyms.
- This material is a sampling surrogate and is an isotopically-labeled compound spiked on the XAD-2 Resin Tube prior to the collection of sample on the MM-5 sampling train.
- ⁹ This percent recovery is outside of the laboratory target recovery range.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data. It should be noted that TICs that give the same mass spectral match for GC peaks at different retention times are listed separately with the same compound identity. Under these conditions the compounds are likely indistinguishable isomers of the same compound. However, insufficient evidence is available to determine unequivocal identities.

			•

VOST Summary - Run 1 Train Totals Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-7. HLLWE Run ID: 0031-STRT-1

Field Sample Name: Sample Description: Volatile Organic Sampling Train (VOST) Totals
Sample Description: Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis

		VOS Tube So (Total μ	et #1	VOS Tube Se (Total με	et #2	VOS Tube Se (Total με	et #3	VOS Tube S (Total μ	et #4	VO: Conde (Tota	nsate	VOS Tota (Total	l¹	
Analyte	CAS Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
Target Compound List					.,,			***************************************						
Acetone	67-64-1	2.4	В	1.1	В	1.0	В	1.3	В	1.4	В	7.2	В	A
Acrylonitrile	107-13-1	< 0.58		< 0.58		< 0.58		< 0.58		< 0.51		< 2.8		N
Benzene	71-43-2	< 0.17		< 0.11		< 0.046		< 0.043		< 0.027		< 0.40		P
Bromobenzene	108-86-1	< 0.020		< 0.020		< 0.020		< 0.020		< 0.036		< 0.12		N
Bromochloromethane	74-97-5	< 0.030		< 0.030		< 0.030		< 0.030		< 0.028		< 0.15		N
Bromodichloromethane	75-27-4	< 0.022		< 0.022		< 0.022		< 0.022		< 0.033		< 0.12		N
Bromoform	75-25-2	< 0.038		< 0.038		< 0.038		< 0.038		< 0.025		< 0.18		N
Bromomethane	74-83-9	< 0.030	J	< 0.038	J	< 0.030	J	< 0.054	J	< 0.020	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.17	J	P
2-Butanone	78-93-3	< 0.20	J	< 0.20		< 0.20		< 0.20		< 0.093		< 0.89	J	P
n-Butylbenzene	104-51-8	< 0.032		< 0.032		< 0.032		< 0.032		< 0.025		< 0.15		N
sec-Butylbenzene	135-98-8	< 0.017		< 0.017		< 0.017		< 0.017		< 0.017		< 0.085		N
tert-Butylbenzene	98-06-6	< 0.032		< 0.032		< 0.032		< 0.032		< 0.014		< 0.14		N
Carbon disulfide	75-15-0	< 0.37		< 0.24		< 0.16		< 0.19		< 0.011		< 0.97		Р
Carbon tetrachloride	56-23-5	< 0.036		< 0.036		< 0.036		< 0.036		< 0.020		< 0.16		N
Chlorobenzene	108-90-7	< 0.017	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.017		< 0.017		< 0.017		< 0.027	***************************************	< 0.095		N
Chlorodibromomethane	124-48-1	< 0.030	••••••••	< 0.030		< 0.030		< 0.030		< 0.029		< 0.15		N
Chloroethane	75-00-3	< 0.036		< 0.036	J	< 0.036	J	< 0.043	J	< 0.014		< 0.16	J	Р
Chloroform	67-66-3	< 0.036	,	< 0.036		< 0.036	J	< 0.10		< 0.031		< 0.24	J	Р
Chloromethane	74-87-3	0.15	J	0.28	. J	0.14	J	0.61	,,,,,,,	< 0.011		1.2	J	P
2-Chlorotoluene	95-49-8	< 0.0094		< 0.0094	***************************************	< 0.0094		< 0.0094		< 0.021		< 0.059		N
4-Chlorotoluene	106-43-4	< 0.0094		< 0.0094		< 0.0094		< 0.0094		< 0.021		< 0.059	,,,,,	N
1,2-Dibromo-3-chloropropane	96-12-8	< 0.058		< 0.058		< 0.058	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.058		< 0.042		< 0.27		N
1,2-Dibromoethane	106-93-4	< 0.040		< 0.040	,	< 0.040		< 0.040		< 0.042		< 0.20		N
Dibromomethane	74-95-3	< 0.034		< 0.034		< 0.034		< 0.034		< 0.030		< 0.17		N
1,2-Dichlorobenzene	95-50-1	< 0.040		< 0.040		< 0.040		< 0.040		< 0.019	***************************************	< 0.18	***************************************	N
1,3-Dichlorobenzene	541-73-1	< 0.020		< 0.020		< 0.020		< 0.020		< 0.022	***************************************	< 0.10		N
1,4-Dichlorobenzene	106-46-7	< 0.028		< 0.028		< 0.028		< 0.028		< 0.023		< 0.14		N
		1						I		A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A		

Last saved by Patti Carswell on 02/05/02 at 7:24 AM

E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-7. 0031-STRT-1.doc

Created on 2/5/2002 7:13 AM

VOST Summary - Run 1 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-7. HLLWE Run ID: 0031-STRT-1

		VOS Tube Se (Total µg	t #1	VOS Tube S (Total μ	et #2	VOS Tube Se (Total µg	et #3	VOS Tube S (Total μ	et #4	VOS Conde (Total	nsate	VOS Tota (Total	d ¹	
Analyte	CAS Registry Number	Risk Result ²		Risk Result ²		Risk Result ²	Flag ³	Risk Result ²		Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
Dichlorodifluoromethane	75-71-8	< 0.064		< 0.061		< 0.057		< 0.062		< 0.011		< 0.26		P
1.1-Dichloroethane	75-34-3	< 0.034		< 0.034		< 0.034		< 0.034		< 0.017		< 0.15		N
1,2-Dichloroethane	107-06-2	< 0.034	J	< 0.034		< 0.034		< 0.034	***************************************	< 0.020		< 0.16	J	P
1,1-Dichloroethene	75-35-4	< 0.036		< 0.036	J	< 0.036	J	< 0.036	J	< 0.016		< 0.16	J	Р
cis-1,2-Dichloroethene	156-59-2	< 0.032		< 0.032		< 0.032		< 0.032		< 0.021		< 0.15	······································	N
trans-1,2-Dichloroethene	156-60-5	< 0.038		< 0.038		< 0.038		< 0.038	***************************************	< 0.014		< 0.17	••••••	N
1,2-Dichloropropane	78-87-5	< 0.026		< 0.026		< 0.026		< 0.026		< 0.023		< 0.13		N
1,3-Dichloropropane	142-28-9	< 0.038		< 0.038		< 0.038		< 0.038		< 0.022		< 0.17		N
2.2-Dichloropropane	594-20-7	< 0.036		< 0.036		< 0.036		< 0.036		< 0.011		< 0.16		N
1,1-Dichloropropene	563-58-6	< 0.040		< 0.040		< 0.040		< 0.040		< 0.016	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.18		N
cis-1,3-Dichloropropene	10061-01-5	< 0.024		< 0.024		< 0.024		< 0.024		< 0.030	***************************************	< 0.13		N
trans-1,3-Dichloropropene	10061-02-6	< 0.030		< 0.030		< 0.030		< 0.030		< 0.028		< 0.15		N
Ethylbenzene	100-41-4	< 0.018		< 0.018		< 0.018		< 0.018	***************************************	< 0.021		< 0.093		N
Hexachlorobutadiene	87-68-3	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025	.,	< 0.22		N
2-Hexanone	591-78-6	< 0.13		< 0.13		< 0.13		< 0.13		< 0.036	4)	< 0.56		N
Isopropylbenzene	98-82-8	< 0.013		< 0.013		< 0.013		< 0.013		< 0.018		< 0.070		N
p-Isopropyltoluene	99-87-6	< 0.024		< 0.024		< 0.024		< 0.024		< 0.018		< 0.11		N
Methylene chloride	75-09-2	13	E	3.0	E,B	1.1	В	0.96	В	0.12	В	18	E,B	A
4-Methyl-2-pentanone	108-10-1	< 0.14		< 0.14		< 0.14		< 0.14		< 0.030		< 0.59		N
Naphthalene	91-20-3	< 0.050		< 0.050		< 0.050		< 0.050		< 0.011		< 0.21		N
n-Propylbenzene	103-65-1	< 0.011		< 0.011		< 0.011		< 0.012		< 0.022		< 0.067		N
Styrene	100-42-5	< 0.014		< 0.014		< 0.014		< 0.014		< 0.022		< 0.078		N
1,1,1,2-Tetrachloroethane	630-20-6	< 0.019		< 0.019		< 0.019		< 0.019		< 0.023		< 0.099		N
1,1,2,2-Tetrachloroethane	79-34-5	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.22		N
Tetrachloroethene	127-18-4	< 0.032		< 0.032		< 0.032		< 0.032		< 0.021		< 0.15		N
Toluene	108-88-3	< 0.032	J	0.041	J	< 0.023	J	0.064	J	< 0.028		< 0.19	J	P
1.2,3-Trichlorobenzene	87-61-6	< 0.050		< 0.050		< 0.050		< 0.050		< 0.011		< 0.21		N
1,2,4-Trichlorobenzene	120-82-1	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.22		N
1,1,1-Trichloroethane	71-55-6	< 0.044		< 0.044		< 0.044		< 0.044		< 0.018		< 0.19		N
1.1,2-Trichloroethane	79-00-5	< 0.036		< 0.036		< 0.036	****	< 0.036		< 0.022		< 0.17		N

Created by Patti Carswell Created on 2/5/2002 7:13 AM Last saved by Patti Carswell on 02/05/02 at 7:24 AM Last printed 2/5/2002 7:24 AM

Filename and Path: E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-7. 0031-STRT-1.doc

VOST Summary - Run 1 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-7. HLLWE Run ID: 0031-STRT-1

		VOS Tube S (Total μ	et #1	VOS Tube S (Total μ	et #2	VOS Tube Se (Total μ	et #3	VOS Tube S (Total μ	et #4	VOS Conde (Total	nsate	VOS Tota (Tota	al¹	
Analyte	CAS Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶

Trichloroethene	79-01-6	< 0.034		< 0.034		< 0.034		< 0.034		< 0.020		< 0.16		N
Trichlorofluoromethane	75-69-4	< 0.036	J	< 0.036	J	< 0.036	J	< 0.036	J	< 0.011		< 0.16	J	Р
1,2,3-Trichloropropane	96-18-4	< 0.050		< 0.050		< 0.050		< 0.050		< 0.036		< 0.24		N
1,2,4-Trimethylbenzene	95-63-6	< 0.015		< 0.015		< 0.015	***************************************	< 0.015		< 0.042		< 0.10		N
1,3,5-Trimethylbenzene	108-67-8	< 0.010		< 0.010		< 0.010		< 0.010		< 0.019		< 0.059		N
Vinyl chloride	75-01-4	< 0.013		< 0.016	J	< 0.013	J	< 0.022	J	< 0.068		< 0.13	J	Р
m-Xylene & p-Xylene	136777-61-2	< 0.10		< 0.10		< 0.10		< 0.10		< 0.042		< 0.44		N
o-Xylene	95-47-6	< 0.013		< 0.013		< 0.013		< 0.013		< 0.025		< 0.077		N
TICs ⁷							······································			,				
Hexane, 2-methyl-	591-76-4		***************************************					0.17			***************************************	0.17	N,J,M	Р
Pentane, 2,3-dimethyl-	565-59-3							0.18			****	0.18	N,J,M	Р
Butane, 1-chloro-	109-69-3							0.057				0.057	N,J,M	P
Hexane, 3-methyl-	589-34-4							0.38				0.38	N,J,M	P
Cyclohexene	110-83-8			0.044		0.027		0.033				0.10	N,J,M	P
1-Heptene	592-76-7							0.054				0.054	N,J,M	Р
Cyclohexane, methyl-	108-87-2							0.11				0.11	N,J,M	Р
Hexane, 2,4-dimethyl-	589-43-5							0.11				0.11	N,J,M	Р
Cyclopentane, ethyl-	1640-89-7							0.028	***************************************			0.028	N,J,M	P
Octane	111-65-9	0.027										0.027	N,J,M	Р
Decane	124-18-5			0.055		0.060			47744444444			0.12	N,J,M	P
Undecane	1120-21-4	0.44		0.23				0.37			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0	N,J,M	P
Undecane, 5-methyl-	1632-70-8	0.13		0.091		0.14		0.28				0.64	N,J,M	P
Decane, 2,9-dimethyl-	1002-17-1	0.064										0.064	N,J,M	P
Dodecane	112-40-3	5.3		4.6		7.2		14			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31	N,J,M	Р
Undecane, 2,6-dimethyl-	17301-23-4							0.11				0.11	N,J,M	P
Cyclohexane, hexyl-	4292-75 - 5				,,,,,	0.059						0.059	N,J,M	Р
Tridecane	629-50-5	0.39		0.32		0.51		1.6				2.8	N,J,M	P
Tetradecane	629-59-4	0.15		0.19		0.22		0.36				0.92	N,J,M	P

A7.3-5

Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
 - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
 - ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
 - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
 - ♦ When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
 - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total μg/Set) result consists of the sum of the analytical results for the two (2) Tenax[®] resin tube contents (analyzed together) and the analytical result for the Anasorb 747[®] Tube contents. The calculation is as follows:

(Total μg on the Tenax® Tubes #1 and #2) + (Total μg on the Anasorb 747® Tube) = Total μg on the Method 0031 VOST tube set. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- ⁴ The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- 5. This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- 6. Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- ^{7.} The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

VOST Summary - Run 3 Train Totals Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-8. HLLWE Run ID: 0031-END-1

Field Sample Name: Sample Description: Volatile Organic Sampling Train (VOST) Totals

Sample Description: Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis

		VOS Tube Se (Total μ	et #1	VOS Tube S (Total μ	et #2	VOS Tube Se (Total με	et #3	VOS Tube S (Total μ	et #4	VOS Conde (Tota	nsate	VOS Tota (Total	l ¹	Destruct
Analyte	CAS Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
Target Compound List														
Acetone	67-64-1	0.70	В	2.6	В	1.4	В	1.1	В	1.4	В	7.2	В	A
Acrylonitrile	107-13-1	< 0.58		< 0.58		< 0.58		< 0.58		< 0.51		< 2.8		N
Benzene	71-43-2	< 0.053		< 0.047		< 0.058		< 0.058		< 0.027		< 0.24		P
Bromobenzene	108-86-1	< 0.020		< 0.020		< 0.020		< 0.020		< 0.036		< 0.12		N
Bromochloromethane	74-97-5	< 0.030		< 0.030		< 0.030	••••	< 0.030		< 0.028		< 0.15		N
Bromodichloromethane	75-27-4	< 0.022		< 0.022		< 0.022	••••••	< 0.022		< 0.034		< 0.12		N
Bromoform	75-25-2	< 0.038		< 0.038		< 0.038		< 0.038		< 0.026		< 0.18		N
Bromomethane	74-83-9	0.035	J	0.045	J	0.054	J	0.075	J	< 0.020		< 0.23	J	P
2-Butanone	78-93-3	< 0.20		< 0.20	J	< 0.20	J	< 0.20	J	< 0.094		< 0.89	J	P
n-Butylbenzene	104-51-8	< 0.032	***************************************	< 0.032		< 0.032		< 0.032		< 0.026		< 0.15		N
sec-Butylbenzene	135-98-8	< 0.017	•••••	< 0.017		< 0.017		< 0.017		< 0.017		< 0.085		N
tert-Butylbenzene	98-06-6	< 0.032		< 0.032		< 0.032	·	< 0.032		< 0.015		< 0.14	••••	N
Carbon disulfide	75-15-0	< 0.35		< 0.17		< 0.39		< 0.27	***************************************	< 0.011		< 1.2		P
Carbon tetrachloride	56-23-5	< 0.036		< 0.036		< 0.036		< 0.036		< 0.020		< 0.16		N
Chlorobenzene	108-90-7	< 0.017		< 0.017		< 0.017	J	< 0.017	J	< 0.027		< 0.095	J	Р
Chlorodibromomethane	124-48-1	< 0.030		< 0.030		< 0.030		< 0.030		< 0.029		< 0.15	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N
Chloroethane	75-00-3	< 0.041	J	< 0.043	J	< 0.047	J	0.049	J	< 0.015		< 0.20	J	Р
Chloroform	67-66-3	< 0.096		< 0.090		< 0.090		< 0.090		< 0.031		< 0.40		Р
Chloromethane	74-87-3	0.52		0.64		0.69		1.0		< 0.011	••••••••••••	< 2.9		Р
2-Chlorotoluene	95-49-8	< 0.0094		< 0.0094		< 0.0094		< 0.0094		< 0.021		< 0.059		N
4-Chlorotoluene	106-43-4	< 0.0094	***************************************	< 0.0094		< 0.0094		< 0.0094		< 0.021		< 0.059		N
1,2-Dibromo-3-chloropropane	96-12-8	< 0.058		< 0.058		< 0.058		< 0.058	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.043		< 0.28		N
1,2-Dibromoethane	106-93-4	< 0.040		< 0.040		< 0.040	***************************************	< 0.040	***************************************	< 0.043		< 0.20		N
Dibromomethane	74-95-3	< 0.034	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.034		< 0.034		< 0.034		< 0.030		< 0.17		N
1,2-Dichlorobenzene	95-50-1	< 0.040	***************************************	< 0.040		< 0.040		< 0.040		< 0.019		< 0.18		N
1,3-Dichlorobenzene	541-73-1	< 0.020		< 0.020		< 0.020		< 0.020		< 0.022		< 0.10		N
1,4-Dichlorobenzene	106-46-7	< 0.028		< 0.028		< 0.028	,	< 0.028		< 0.024		< 0.14		N

Last saved by Patti Carswell on 02/05/02 at 7:36 AM

E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-8. 0031-END-1.doc

Created on 2/5/2002 7:28 AM

VOST Summary - Run 3 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-8. HLLWE Run ID: 0031-END-1

Analyte Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	CAS Registry Number	Risk Result ²	Flag ³	Risk			/Set)	(- σται μ	g/Set)	(Total	μg)	(Total	μg)	D!
1,1-Dichloroethane 1,2-Dichloroethane				Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
1,1-Dichloroethane 1,2-Dichloroethane		< 0.035	J	< 0.037	J	< 0.034	J	< 0.046		< 0.011		< 0.16	J	P
	75-34 - 3	< 0.034		< 0.034		< 0.034		< 0.034		< 0.017		< 0.15		N
	107-06-2	< 0.034	J	< 0.034	J	< 0.034	J	< 0.034	J	< 0.020		< 0.16	J	P
1,1-Dichloroethene	75-35-4	< 0.036	J	< 0.041	J	< 0.039	J	< 0.044	,.,,	< 0.016		< 0.18	J	Р
cis-1,2-Dichloroethene	156-59-2	< 0.032		< 0.032		< 0.032		< 0.032		< 0.021		< 0.15		N
trans-1,2-Dichloroethene	156-60-5	< 0.038		< 0.038		< 0.038		< 0.038		< 0.013		< 0.16		N
1,2-Dichloropropane	78-87-5	< 0.026		< 0.026		< 0.026		< 0.026	J	< 0.024		< 0.13	J	P
1,3-Dichloropropane	142-28-9	< 0.038		< 0.038		< 0.038		< 0.038		< 0.022	,	< 0.17		N
2,2-Dichloropropane	594-20-7	< 0.036		< 0.036		< 0.036		< 0.036		< 0.011		< 0.16		N
1,1-Dichloropropene	563-58-6	< 0.040		< 0.040		< 0.040		< 0.040		< 0.016		< 0.18		N
cis-1,3-Dichloropropene	10061-01-5	< 0.024		< 0.024		< 0.024		< 0.024		< 0.030		< 0.13		N
trans-1,3-Dichloropropene	10061-02-6	< 0.030		< 0.030		< 0.030		< 0.030		< 0.028		< 0.15		N
Ethylbenzene	100-41-4	< 0.018		< 0.018		< 0.018		< 0.018		< 0.021		< 0.093		N
Hexachlorobutadiene	87-68-3	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.22		N
2-Hexanone	591-78-6	< 0.13	***************************************	< 0.13		< 0.13		< 0.13		< 0.036		< 0.56		N
Isopropylbenzene	98-82-8	< 0.013		< 0.013		< 0.013		< 0.013		< 0.018		< 0.070		N
p-Isopropyltoluene	99-87-6	< 0.024		< 0.024		< 0.024		< 0.024		< 0.018		< 0.11		N
Methylene chloride	75-09-2	0.59		0.26		0.42		0.28		0.13	В	1.7	В	A
4-Methyl-2-pentanone	108-10-1	< 0.14		< 0.14		< 0.14		< 0.14		< 0.030		< 0.59		N
Naphthalene	91-20-3	< 0.050	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.050		< 0.050		< 0.050		< 0.011		< 0.21		N
n-Propylbenzene	103-65-1	< 0.011		< 0.011		< 0.011		< 0.011		< 0.022		< 0.066		N
Styrene	100-42-5	< 0.014		< 0.014	***************************************	< 0.014		< 0.014		< 0.022		< 0.078		N
1,1,1,2-Tetrachloroethane	630-20-6	< 0.019		< 0.019		< 0.019		< 0.019		< 0.024		< 0.10		N
1,1,2,2-Tetrachloroethane	79-34-5	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.22		N
Tetrachloroethene	127-18-4	< 0.032		< 0.032		< 0.032		< 0.032		< 0.021		< 0.15		N
Toluene	108-88-3	0.14		0.051	J	< 0.032	J	< 0.031	J	< 0.028		< 0.28	J	Р
1,2,3-Trichlorobenzene	87-61-6	< 0.050		< 0.050		< 0.050		< 0.050		< 0.011		< 0.21		N
1,2,4-Trichlorobenzene	120-82-1	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.22		N
1,1,1-Trichloroethane	71-55-6	< 0.044		< 0.044		< 0.044		< 0.044		< 0.018		< 0.19		N

Created by Patti Carswell Created on 2/5/2002 7:28 AM Last saved by Patti Carswell on 02/05/02 at 7:36 AM Last printed 2/5/2002 7:36 AM

Filename and Path: E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-8. 0031-END-1.doc

VOST Summary - Run 3 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-8. HLLWE Run ID: 0031-END-1

CAS	Tube S	et #1	Tube S	et #2	Tube Se	et #3	Tube S	et #4	Conde	nsate	Tot	al ¹	Project
Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Specific Flag ⁶
79-00-5	< 0.036		< 0.036		< 0.036		< 0.036		< 0.022		< 0.17	·····	N
79-01-6	< 0.034		< 0.034		< 0.034		< 0.034		< 0.020		< 0.16		N
75-69-4	< 0.036		< 0.036		< 0.036	J	< 0.036		< 0.011		< 0.16	J	Р
96-18-4	< 0.050		< 0.050		< 0.050		< 0.050		< 0.036		< 0.24		N
95-63-6	< 0.015		< 0.015		< 0.015		< 0.015		< 0.043		< 0.10		N
108-67-8	< 0.010		< 0.010		< 0.010		< 0.010	·····	< 0.019	· • • • • • • • • • • • • • • • • • • •	< 0.059		N
75-01-4	< 0.020	J	< 0.025	J	0.023	J	0.039	J	< 0.068		< 0.18	J	P
136777-61-2	< 0.10		< 0.10		< 0.10		< 0.10		< 0.043		< 0.44		N
95-47-6	< 0.013	J	< 0.013		< 0.013		< 0.013		< 0.026		< 0.078	J	Р
						***************************************	••••						
562-49-2	0.059										0.059	N,J,M	Р
591-76-4	0.27	***************************************	0.037			***************************************					0.31	N,J,M	Р
565-59-3			0.031								0.031	N,J,M	Р
589-34-4	0.65		0.076		0.031						0.76	N,J,M	Р
110-83-8	0.036										0.036	N,J,M	Р
2597-49-1			0.029		0.044		0.047				0.12	N,J,M	Р
822-50-4	0.079										0.079	N,J,M	Р
108-87-2	0.20										0.20	N,J,M	P
589-43-5	0.16		0.025								0.18	N,J,M	P
1640-89-7	0.041										0.041	N,J,M	P
76-06-2							0.36				0.36	N,J,M	Р
100-47-0			0.074		0.058		0.059				0.19	N,J,M	P
1120-21-4	0.21				0.14		0.15				0.50	N,J,M	Р
1632-70-8					0.076		0.10				0.18	N,J,M	Р
112-40-3	8.4		5.7		5.2		6.8				26	N,J,M	Р
629-50-5	0.98		0.64		0.58		0.89	D#1D***********************************			3.1	N,J,M	Р
629-59-4	0.40		0.24				0.37				1.0	N,J,M	Р
544-76-3					0.21						0.21	N,J,M	P
	79-00-5 79-01-6 75-69-4 96-18-4 95-63-6 108-67-8 75-01-4 136777-61-2 95-47-6 562-49-2 591-76-4 565-59-3 589-34-4 110-83-8 2597-49-1 822-50-4 108-87-2 589-43-5 1640-89-7 76-06-2 1100-47-0 1120-21-4 1632-70-8 112-40-3 629-50-5 629-59-4	CAS Registry Number 79-00-5 79-01-6 79-01-6 75-69-4 75-69-4 75-69-4 75-63-6 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 75-01-4 136777-61-2 108-67-8 0.010 75-01-4 0.020 136777-61-2 0.013 562-49-2 0.059 591-76-4 0.27 565-59-3 589-34-4 0.65 110-83-8 0.036 2597-49-1 822-50-4 0.079 108-87-2 0.20 589-43-5 0.16 1640-89-7 0.041 76-06-2 100-47-0 1120-21-4 0.21 1632-70-8 112-40-3 8.4 629-59-4 0.40	Registry Number Risk Result² Flag³ 79-00-5 < 0.036	Tube Set #1 (Total μg/Set) Tube Set #1 (Total μg/Set) Tube Set #1 (Total μg/Set) Risk Result² Risk Result² Risk Result² Risk Result² 79-00-5 < 0.036	Tube Set #1 (Total μg/Set) Tube Set #2 (Total μg/Set) Risk Result² Risk Result² Risk Result² Risk Result² Flag³ 79-00-5 < 0.036	CAS Registry Number Tibe Set #1 (Total μg/Set) Tube Set #2 (Total μg/Set) Risk Result² Risk Result²	Tube Set #1 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #3 (Total µg/Set) Registry Number Risk Result² Flag³ Risk Result² Flag³ Risk Result² Flag³ 79-00-5 < 0.036	CCAS Registry Number Risk Result (Total µg/Set) Tube Set #2 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #3 (Total µg/Set) Risk Result Flag Risk Result Risk R	Tube Set #1	CAS Registry Number Risk Result Flag Risk Result Flag Risk Result Flag Risk Result Flag Risk Result Risk Result </td <td> Tube Set #1 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #4 (Total µg/Set) Total µg/Set)</td> <td>CAS Registry Number Tube Set #3 (Total µg/Set) Tube Set #4 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #4 (Total µg/Set) Codal µg/Set) Tube Set #4 (Total µg/Set) Codal µg/Set) Total µg/Set)<td> Tube Set #1</td></td>	Tube Set #1 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #4 (Total µg/Set) Total µg/Set)	CAS Registry Number Tube Set #3 (Total µg/Set) Tube Set #4 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #3 (Total µg/Set) Tube Set #4 (Total µg/Set) Codal µg/Set) Tube Set #4 (Total µg/Set) Codal µg/Set) Total µg/Set) <td> Tube Set #1</td>	Tube Set #1

Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
 - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
 - When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
 - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
 - When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
 - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total μg/Set) result consists of the sum of the analytical results for the two (2) Tenax[®] resin tube contents (analyzed together) and the analytical result for the Anasorb 747[®] Tube contents. The calculation is as follows:

(Total μg on the Tenax® Tubes #1 and #2) + (Total μg on the Anasorb 747® Tube) = Total μg on the Method 0031 VOST tube set. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- ⁴ The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- 7. The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

VOST Summary - Run 2 Train Totals Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

Field Sample Name: Volatile Organic Sampling Train (VOST) Totals

Sample Description: Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis

		VOS Tube So (Total με	et #1	VOS Tube S (Total μ	et #2	VOS Tube Se (Total με	t #3	VOS Tube So (Total µg	et #4	VOS Conde (Tota	nsate	VOS Tota (Total	al¹	
Analyte	CAS Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
Target Compound List														
Acetone	67-64-1	1.2	В	0.81	J,B	1.2	В	< 0.26	J,B	1.5	В	5.0	J,B	Α
Acrylonitrile	107-13-1	< 0.58		< 0.58		< 0.58		< 0.58		< 0.51		< 2.8		N
Benzene	71-43-2	< 0.063		< 0.053		< 0.040	J	< 0.038	J	< 0.027		< 0.22	J	Р
Bromobenzene	108-86-1	< 0.020		< 0.020		< 0.020		< 0.020		< 0.036		< 0.12		N
Bromochloromethane	74-97-5	< 0.030		< 0.030		< 0.030	,	< 0.030		< 0.028		< 0.15		N
Bromodichloromethane	75-27-4	< 0.022		< 0.022		< 0.022		< 0.022		< 0.034		< 0.12		N
Bromoform	75-25-2	< 0.038	***************************************	< 0.038		< 0.038		< 0.038		< 0.026		< 0.18		N
Bromomethane	74-83-9	< 0.030	J	< 0.030	J	< 0.033	J	< 0.039	J	< 0.020		< 0.15	J	Р
2-Butanone	78-93-3	< 0.20		< 0.20		< 0.20	J	< 0.20		< 0.094		< 0.89	J	Р
n-Butylbenzene	104-51-8	< 0.032		< 0.032		< 0.032		< 0.032		< 0.026		< 0.15		N
sec-Butylbenzene	135-98-8	< 0.017		< 0.017		< 0.017		< 0.017		< 0.017		< 0.085	-	N
tert-Butylbenzene	98-06-6	< 0.032		< 0.032		< 0.032		< 0.032		< 0.015		< 0.14		N
Carbon disulfide	75-15-0	< 0.46		< 0.31		< 0.29		< 0.26		< 0.011		< 1.3		Р
Carbon tetrachloride	56-23-5	< 0.036		< 0.036		< 0.036		< 0.036		< 0.020		< 0.16		N
Chlorobenzene	108-90-7	< 0.017		< 0.017		< 0.017		< 0.017	***************************************	< 0.027		< 0.095		N
Chlorodibromomethane	124-48-1	< 0.030		< 0.030		< 0.030		< 0.030		< 0.029		< 0.15		N
Chloroethane	75-00-3	< 0.036		< 0.036		< 0.042	J	< 0.038	J	< 0.015		< 0.17	J	Р
Chloroform	67-66-3	< 0.036		< 0.036	***************************************	< 0.094		< 0.13		< 0.031		< 0.33		Р
Chloromethane	74-87-3	< 0.061	J	0.16	J	0.47		0.48		< 0.011		< 1.2	J	Р
2-Chlorotoluene	95-49-8	< 0.0094		< 0.0094		< 0.0094		< 0.0094		< 0.021		< 0.059		N
4-Chlorotoluene	106-43-4	< 0.0094		< 0.0094		< 0.0094		< 0.0094		< 0.021		< 0.059		N
1,2-Dibromo-3-chloropropane	96-12-8	< 0.058		< 0.058		< 0.058	······	< 0.058		< 0.043		< 0.28		N
1,2-Dibromoethane	106-93-4	< 0.040		< 0.040		< 0.040		< 0.040		< 0.043		< 0.20		N
Dibromomethane	74-95-3	< 0.034		< 0.034		< 0.034		< 0.034		< 0.030		< 0.17		N
1,2-Dichlorobenzene	95-50-1	< 0.040		< 0.040		< 0.040		< 0.040		< 0.019		< 0.18		N
1,3-Dichlorobenzene	541-73-1	< 0.020		< 0.020		< 0.020		< 0.020		< 0.022		< 0.10	***************************************	N

VOST Summary - Run 2 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

		VOST Tube Set #1 (Total µg/Set)	VOST Tube Set #2 (Total µg/Set)	VOST Tube Set #3 (Total µg/Set)	VOST Tube Set #4 (Total µg/Set)	VOST Condensate (Total µg)	VOST Total¹ (Total μg)	
Analyte	CAS Registry Number	Risk Result ² Flag ³	Risk Result ⁴ Flag ⁵	Total Flag	Project Specific Flag ⁶			
1,4-Dichlorobenzene	106-46-7	< 0.028	< 0.028	< 0.028	< 0.028	< 0.024	< 0.14	N
Dichlorodifluoromethane	75-71-8	< 0.047	< 0.054	< 0.048	< 0.039	< 0.011	< 0.20	Р
1,1-Dichloroethane	75-34-3	< 0.034	< 0.034	< 0.034	< 0.034	< 0.017	< 0.15	N
1,2-Dichloroethane	107-06-2	< 0.034	< 0.034	< 0.034	< 0.034	< 0.020	< 0.16	N
1,1-Dichloroethene	75-35-4	< 0.036	< 0.036	< 0.036 J	< 0.036 J	< 0.016	< 0.16 J	Р
cis-1,2-Dichloroethene	156-59-2	< 0.032	< 0.032	< 0.032	< 0.032	< 0.021	< 0.15	N
trans-1,2-Dichloroethene	156-60-5	< 0.038	< 0.038	< 0.038	< 0.038	< 0.013	< 0.16	N
1,2-Dichloropropane	78-87-5	< 0.026	< 0.026	< 0.026	< 0.026	< 0.024	< 0.13	N
1,3-Dichloropropane	142-28-9	< 0.038	< 0.038	< 0.038	< 0.038	< 0.022	< 0.17	N
2,2-Dichloropropane	594-20-7	< 0.036	< 0.036	< 0.036	< 0.036	< 0.011	< 0.16	N
1,1-Dichloropropene	563-58-6	< 0.040	< 0.040	< 0.040	< 0.040	< 0.016	< 0.18	N
cis-1,3-Dichloropropene	10061-01-5	< 0.024	< 0.024	< 0.024	< 0.024	< 0.030	< 0.13	N
trans-1,3-Dichloropropene	10061-02-6	< 0.030	< 0.030	< 0.030	< 0.030	< 0.028	< 0.15	N
Ethylbenzene	100-41-4	< 0.018	< 0.018	< 0.018	< 0.018	< 0.021	< 0.093	N
Hexachlorobutadiene	87-68-3	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.22	N
2-Hexanone	591-78-6	< 0.13	< 0.13	< 0.13	< 0.13	< 0.036	< 0.56	N
Isopropylbenzene	98-82-8	< 0.013	< 0.013	< 0.013	< 0.013	< 0.018	< 0.070	N
p-Isopropyltoluene	99-87-6	< 0.024	< 0.024	< 0.024	< 0.024	< 0.018	< 0.11	N
Methylene chloride	75-09-2	0.55 B	0.15 B	0.13 B	0.12 B	0.13 B	1.1 B	Α
4-Methyl-2-pentanone	108-10-1	< 0.14	< 0.14	< 0.14	< 0.14	< 0.030	< 0.59	N
Naphthalene	91-20-3	< 0.050	< 0.050	< 0.050	< 0.050	< 0.011	< 0.21	N
n-Propylbenzene	103-65-1	< 0.011	< 0.011	< 0.011	< 0.011	< 0.022	< 0.066	N
Styrene	100-42-5	< 0.014	< 0.014	< 0.014	< 0.014	< 0.022	< 0.078	N
1,1,1,2-Tetrachloroethane	630-20-6	< 0.019	< 0.019	< 0.019	< 0.019	< 0.024	< 0.10	N
1,1,2,2-Tetrachloroethane	79-34-5	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.22	N
Tetrachloroethene	127-18-4	< 0.032	< 0.032	< 0.032	< 0.032	< 0.021	< 0.15	N
Toluene	108-88-3	< 0.027 J	0.17 J	0.031 J	0.045 J	< 0.028	< 0.30 J	Р
1,2,3-Trichlorobenzene	87-61-6	< 0.050	< 0.050	< 0.050	< 0.050	< 0.011	< 0.21	N
1,2,4-Trichlorobenzene	120-82-1	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.22	N

VOST Summary - Run 2 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

		VOST Tube Set #1 (Total μg/Set)	VOST Tube Set #2 (Total µg/Set)	VOST Tube Set #3 (Total µg/Set)	VOST Tube Set #4 (Total µg/Set)	VOST Condensate (Total μg)	VOST Total ⁱ (Total μg)	
Analyte	CAS Registry Number	Risk Result ² Flag	Risk Result ² Flag ³	Risk Result ² Flag ³	Risk Result ² Flag ³	Risk Result ⁴ Flag ⁵	Total Flag	Project Specific Flag ⁶
1,1,1-Trichloroethane	71-55-6	< 0.044	< 0.044	< 0.044	< 0.044	< 0.018	< 0.19	N
1,1,2-Trichloroethane	79-00-5	< 0.036	< 0.036	< 0.036	< 0.036	< 0.022	< 0.17	N
Trichloroethene	79-01-6	< 0.034	< 0.034	< 0.034	< 0.034	< 0.020	< 0.16	N
Trichlorofluoromethane	75-69-4	< 0.036 J	< 0.036 J	< 0.036 J	< 0.036	< 0.011	<0.16 J	P
1,2,3-Trichloropropane	96-18-4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.036	< 0.24	N
1,2,4-Trimethylbenzene	95-63-6	< 0.015	< 0.015	< 0.015	< 0.015	< 0.043	< 0.10	N
1,3,5-Trimethylbenzene	108-67-8	< 0.010	< 0.010	< 0.010	< 0.010	< 0.019	< 0.059	N
Vinyl chloride	75-01-4	< 0.013	< 0.013	< 0.018 J	< 0.016 J	< 0.068	< 0.13 J	Р
m-Xylene & p-Xylene	136777-61-2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.043	< 0.44	N
o-Xylene	95-47-6	< 0.013	< 0.013	< 0.013	< 0.013	< 0.026	< 0.078	N

VOST Summary - Run 2 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-9. HLLWE Run ID: 0031-STRT-2

		VOST Tube Set #1 (Total μg/Set)	VOST Tube Set #2 (Total µg/Set)	VOST Tube Set #3 (Total μg/Set)	VOST Tube Set #4 (Total µg/Set)	VOST Condensate (Total μg)	VOST Total¹ (Total μg)	
Analyte	CAS Registry Number	Risk Result ² Flag ³	Risk Result ⁴ Flag ⁵	Total Flag	Project Specific Flag ⁶			
TICs ⁷								
Hexane, 2-methyl-	591-76-4		0.17	0.059	0.072		0.30 N,J,M	Р
Pentane, 2,3-dimethyl-	565-59-3			0.057	0.056		0.11 N,J,M	Р
Hexane, 3-methyl-	589-34-4			0.12	0.15		0.27 N,J,M	Р
Pentane, 3-ethyl-	617-78-7			0.034			0.034 N,J,M	Р
Cyclohexene	110-83-8	0.030	0.042	0.036	0.073		0.18 N,J,M	Р
Cyclopentane, 1,2-dimethyl-	2452-99-5		0.053				0.053 N,J,M	Р
Cyclohexane, methyl-	108-87-2		0.13	0.032	0.037		0.20 N,J,M	Р
Hexane, 2,4-dimethyl-	589-43-5		0.13	0.037	0.037		0.20 N,J,M	Р
Cyclopentane, ethyl-	1640-89-7		0.036				0.036 N,J,M	P
Benzonitrile	100-47-0	0.038	0.034				0.072 N,J,M	P
Tridecane	629-50-5	0.082					0.082 N,J,M	P
Undecane	1120-21-4		0.065	0.10	0.080		0.24 N,J,M	Р
Decane, 2,2,5-trimethyl-	62237-96-1				0.060		0.060 N,J,M	Р
Undecane, 5-methyl-	1632-70-8	0.052	0.051	0.11			0.21 N,J,M	Р
Dodecane	112-40-3	3.4	3.4	8.1	6.8		22 N,J,M	Р
Dodecane, 6-methyl-	6044-71-9			0.052			0.052 N,J,M	P
Undecane, 2,6-dimethyl-	17301-23-4				0.046		0.046 N,J,M	P
Tridecane	629-50-5	0.34	0.29	0.84	0.93		2.4 N,J,M	P
Tetradecane	629-59-4	0.17	0.16	0.28	0.37		0.98 N,J,M	P

Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
 - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
 - When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
 - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
 - When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
 - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total μg/Set) result consists of the sum of the analytical results for the two (2) Tenax[®] resin tube contents (analyzed together) and the analytical result for the Anasorb 747[®] Tube contents. The calculation is as follows:

(Total μg on the Tenax® Tubes #1 and #2) + (Total μg on the Anasorb 747® Tube) = Total μg on the Method 0031 VOST tube set. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- ⁴ The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- ⁵ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- 6. Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- 7. The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

VOST Summary - Run 4 Train Totals Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-10. HLLWE Run ID: 0031-END-2

Field Sample Name: Sample Description: Volatile Organic Sampling Train (VOST) Totals
Sample Description: Tenax® and Anasorb 747® Tube Sets (Sets #1, #2, #3, and #4) and the VOST Condensate for Volatile Organic Compounds (VOC) Analysis

		VOS Tube Se (Total μ	et #1	VOS Tube S (Total μ	et #2	VOS Tube So (Total με	et #3	VOS Tube S (Total μ	et #4	VOS Conde (Total	nsate	VOS Tota (Total	al ¹	
Analyte	CAS Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
Target Compound List													.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Acetone	67-64-1	< 0.46	J,B	0.59	В	1.3	В	1.4	В	0.081	J,B	< 3.8	J,B	A
Acrylonitrile	107-13-1	< 0.58		< 0.58		< 0.58		< 0.58		< 0.51		< 2.8		N
Benzene	71-43-2	< 0.052		< 0.034		< 0.044		< 0.047		< 0.027		< 0.20		Р
Bromobenzene	108-86-1	< 0.020		< 0.020		< 0.020		< 0.020		< 0.036		< 0.12		N
Bromochloromethane	74-97-5	< 0.030	***************************************	< 0.030		< 0.030		< 0.030	,,,,	< 0.028		< 0.15		N
Bromodichloromethane	75-27-4	< 0.022		< 0.022		< 0.022		< 0.022		< 0.033		< 0.12		N
Bromoform	75-25-2	< 0.038	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.038		< 0.038		< 0.038		< 0.025		< 0.18		N
Bromomethane	74-83-9	< 0.030	J	< 0.055	J	< 0.041	J	< 0.049	J	< 0.020	•••••••••••	< 0.20	J	Р
2-Butanone	78-93-3	< 0.20		< 0.20		< 0.20		< 0.20		< 0.093		< 0.89		N
n-Butylbenzene	104-51-8	< 0.032		< 0.032		< 0.032		< 0.032		< 0.025		< 0.15		N
sec-Butylbenzene	135-98-8	< 0.017		< 0.017		< 0.017		< 0.017		< 0.017		< 0.085		N
tert-Butylbenzene	98-06-6	< 0.032		< 0.032		< 0.032		< 0.032		< 0.014		< 0.14		N
Carbon disulfide	75-15-0	0.22		< 0.036		< 0.18		< 0.19		< 0.011		< 0.64		P
Carbon tetrachloride	56-23-5	< 0.036	J	< 0.036		< 0.036		< 0.036	J	< 0.020		< 0.16	J	P
Chlorobenzene	108-90-7	< 0.017	J	< 0.017		< 0.017	J	< 0.017	J	< 0.027		< 0.095	J	Р
Chlorodibromomethane	124-48-1	< 0.030		< 0.030		< 0.030		< 0.030		< 0.029		< 0.15		N
Chloroethane	75-00-3	< 0.036	J	< 0.036	J	< 0.036	J	< 0.036	J	< 0.014		< 0.16	J	Р
Chloroform	67-66-3	< 0.15		< 0.036		< 0.087		< 0.087	······································	< 0.031		< 0.39		Р
Chloromethane	74-87-3	0.46		< 0.70		0.65	J	0.70		< 0.011		< 2.5	J	P
2-Chlorotoluene	95-49-8	< 0.0094		< 0.0094		< 0.0094		< 0.0094		< 0.021		< 0.059		N
4-Chlorotoluene	106-43-4	< 0.0094		< 0.0094		< 0.0094		< 0.0094		< 0.021		< 0.059		N
1,2-Dibromo-3-chloropropane	96-12-8	< 0.058		< 0.058		< 0.058		< 0.058		< 0.042		< 0.27		N
1,2-Dibromoethane	106-93-4	< 0.040		< 0.040		< 0.040		< 0.040		< 0.042		< 0.20		N
Dibromomethane	74-95-3	< 0.034		< 0.034		< 0.034		< 0.034	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.030		< 0.17		N
1,2-Dichlorobenzene	95-50-1	< 0.040		< 0.040		< 0.040		< 0.040		< 0.019		< 0.18		N
1,3-Dichlorobenzene	541-73 - 1	< 0.020		< 0.020		< 0.020		< 0.020	***************************************	< 0.022		< 0.10		N
1,4-Dichlorobenzene	106-46-7	< 0.028		< 0.028	***************************************	< 0.028		< 0.028		< 0.023		< 0.14		N

Last saved by Patti Carswell on 02/05/02 at 7:54 AM

E.\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-10. 0031-END-2.doc

Created on 2/5/2002 7:51 AM

VOST Summary - Run 4 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-10. HLLWE Run ID: 0031-END-2

		VOS Tube Se (Total μ	et #1	VOS Tube S (Total μ	et #2	VOS Tube Se (Total με	et #3	VOS Tube S (Total μ	et #4	VO: Conde (Tota	nsate	VOS Tota (Total	ıl¹	
Analyte	CAS Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
Dichlorodifluoromethane	75-71-8	< 0.032	J	< 0.041		< 0.039		< 0.039		< 0.011		< 0.16	J	P
1,1-Dichloroethane	75-34-3	< 0.034	-	< 0.034		< 0.034		< 0.034		< 0.017		< 0.15		N
1,2-Dichloroethane	107-06-2	< 0.034		< 0.034		< 0.034		< 0.034		< 0.020		< 0.16		N
1,1-Dichloroethene	75-35-4	< 0.036	J	< 0.036		< 0.036	J	< 0.036	J	< 0.016		< 0.16	J	Р
cis-1,2-Dichloroethene	156-59-2	< 0.032		< 0.032		< 0.032		< 0.032		< 0.021	,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.15		N
trans-1,2-Dichloroethene	156-60-5	< 0.038		< 0.038		< 0.038		< 0.038	***************************************	< 0.013		< 0.17		N
1,2-Dichloropropane	78-87-5	< 0.026		< 0.026		< 0.026		< 0.026		< 0.023		< 0.13		N
1,3-Dichloropropane	142-28-9	< 0.038		< 0.038		< 0.038		< 0.038		< 0.022		< 0.17		N
2,2-Dichloropropane	594-20-7	< 0.036	.,	< 0.036		< 0.036		< 0.036		< 0.011		< 0.16		N
1,1-Dichloropropene	563-58-6	< 0.040		< 0.040		< 0.040		< 0.040		< 0.016		< 0.18		N
cis-1,3-Dichloropropene	10061-01-5	< 0.024	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.024		< 0.024		< 0.024		< 0.030	·····	< 0.13		N
trans-1,3-Dichloropropene	10061-02-6	< 0.030		< 0.030		< 0.030		< 0.030		< 0.028		< 0.15		N
Ethylbenzene	100-41-4	< 0.018		< 0.018		< 0.018		< 0.018		< 0.021		< 0.093		N
Hexachlorobutadiene	87-68-3	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.23		N
2-Hexanone	591-78-6	< 0.13		< 0.13		< 0.13		< 0.13	.,	< 0.036		< 0.56		N
Isopropylbenzene	98-82-8	< 0.013		< 0.013	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.013		< 0.013	***************************************	< 0.018		< 0.070		N
p-Isopropyltoluene	99-87-6	< 0.024	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.024		< 0.024		< 0.024		< 0.018		< 0.11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N
Methylene chloride	75-09-2	0.13	В	0.071	В	0.10	В	0.11	В	< 0.019	J,B	< 0.43	J,B	A
4-Methyl-2-pentanone	108-10-1	< 0.14		< 0.14		< 0.14		< 0.14	,,,,,,	< 0.030		< 0.59		N
Naphthalene	91-20-3	< 0.050		< 0.050		< 0.050		< 0.050		< 0.011		< 0.21		N
n-Propylbenzene	103-65-1	< 0.011		< 0.011		< 0.011		< 0.011		< 0.022		< 0.066		N
Styrene	100-42-5	< 0.014		< 0.014		< 0.014		< 0.014		< 0.022		< 0.078		N
1,1,1,2-Tetrachloroethane	630-20-6	< 0.019		< 0.019		< 0.019		< 0.019		< 0.023		< 0.099		N
1,1,2,2-Tetrachloroethane	79-34-5	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.23		N
Tetrachloroethene	127-18-4	< 0.032		< 0.032		< 0.032		< 0.032		< 0.021		< 0.15		N
Toluene	108-88-3	< 0.048		< 0.046		< 0.028	J	0.026	J	< 0.028		< 0.18	J	P
1,2,3-Trichlorobenzene	87-61-6	< 0.050		< 0.050		< 0.050		< 0.050		< 0.011		< 0.21		N
1,2,4-Trichlorobenzene	120-82-1	< 0.050		< 0.050		< 0.050		< 0.050		< 0.025		< 0.23		N
1.1,1-Trichloroethane	71-55-6	< 0.044	,,,,,,,,,,,	< 0.044		< 0.044		< 0.044		< 0.018		< 0.19		N

Created by Patti Carswell Created on 2/5/2002 7:51 AM Last saved by Patti Carswell on 02/05/02 at 7:54 AM Last printed 2/5/2002 7:54 AM Filename and Path: E:\My Documents\HLLWE Sampling\Final Report\Appendix A\Table A-10. 0031-END-2.doc

VOST Summary - Run 4 Train Totals (Continued) Method 0031 Volatile Organic Compounds Analytical Results Summary Table A-10. HLLWE Run ID: 0031-END-2

		VOS Tube Se (Total με	et #1	VOS Tube Se (Total μ	et #2	VOS Tube Se (Total με	et #3	VOS Tube S (Total μ	et #4	VOS Conde (Total	nsate	VOS Tota (Tota	ai¹	
Analyte	CAS Registry Number	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ²	Flag ³	Risk Result ⁴	Flag ⁵	Total	Flag	Project Specific Flag ⁶
1,1,2-Trichloroethane	79-00-5	< 0.036		< 0.036		< 0.036		< 0.036		< 0.022		< 0.17		N
Trichloroethene	79-01-6	< 0.034		< 0.034		< 0.034		< 0.034	•••••	< 0.020		< 0.16		N
Trichlorofluoromethane	75-69-4	< 0.036	J	< 0.036		< 0.036	J	< 0.036	J	< 0.011		< 0.16	J	Р
1,2,3-Trichloropropane	96-18-4	< 0.050		< 0.050		< 0.050		< 0.050		< 0.036		< 0.24		N
1,2,4-Trimethylbenzene	95-63-6	< 0.015		< 0.015		< 0.015		< 0.015		< 0.042		< 0.10		N
1,3,5-Trimethylbenzene	108-67-8	< 0.010		< 0.010		< 0.010		< 0.010		< 0.019		< 0.059		N
Vinyl chloride	75-01-4	< 0.020	J	< 0.026	J	< 0.026	J	< 0.027	J	< 0.068		< 0.17	J	Р
m-Xylene & p-Xylene	136777-61-2	< 0.10	,	< 0.10		< 0.10		< 0.10		< 0.042		< 0.44		N
o-Xylene	95-47-6	< 0.013	J	< 0.013		< 0.013		< 0.013		< 0.025		< 0.077	J	Р
TICs ⁷	***************************************	•												
Hexane, 2-methyl-	591-76-4	0.047	,	0.10		0.052		0.040				0.24	N,J,M	Р
Pentane, 2,3-dimethyl-	565-59-3			0.10				0.037				0.14	N,J,M	P
Hexane, 3-methyl-	589-34-4			0.26				0.081				0.34	N,J,M	Р
Pentane, 3-ethyl-	617-78-7					0.032					,,,,,	0.032	N,J,M	P
Cyclohexene	110-83-8	0.026										0.026	N,J,M	Р
Cyclopentane, 1,2-dimethyl-, t	822-50-4			0.030								0.030	N,J,M	P
Cyclohexane, methyl-	108-87-2	0.027		0.065		0.031						0.12	N,J,M	P
Hexane, 2,4-dimethyl-	589-43-5			0.066		0.028						0.094	N,J,M	P
Benzonitrile	100-47-0							0.047				0.047	N,J,M	P
Undecane	1120-21-4	0.014				0.054	***************************************	0.049				0.12	N,J,M	P
Undecane, 5-methyl-	1632-70-8	0.13				0.047						0.18	N,J,M	P
Dodecane	112-40-3	9.9		0.070		3.8		3.5				17	N,J,M	Р
Undecane, 2,6-dimethyl-	17301-23-4	0.083										0.083	N,J,M	Р
Tridecane	629-50-5	1.9		0.046		0.58		0.53				3.1	N,J,M	P
Tetradecane	629-59-4	0.58		0.096		0.35		0.36				1.4	N,J,M	Р

Footnotes:

- The Method 0031 VOST Run Total (in Total μg) is the sum of results for the four (4) VOST tube sets and the condensate sample collected during the same sampling run using the following guidelines:
 - When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
 - ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory and the corresponding "J" flag is carried through the calculation to the train total.
 - When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "J" flag is carried through the calculation to the train total.
 - ♦ When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
 - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the VOST Total are the cumulative set of flags contributed by each train tube set included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Total" column when the associated component analytical result is a significant number in comparison to the VOST Total. That is, if the VOST Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Total, but if the VOST Total is not affected by a VOST component, the associated flag is not carried through to the VOST Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

The Method 0031 VOST Tube Set (Total μ g/Set) result consists of the sum of the analytical results for the two (2) Tenax[®] resin tube contents (analyzed together) and the analytical result for the Anasorb 747[®] Tube contents. The calculation is as follows:

(Total μg on the Tenax[®] Tubes #1 and #2) + (Total μg on the Anasorb 747[®] Tube) = Total μg on the Method 0031 VOST tube set. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g/\text{set}$

When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value included in the tube set total is the default RDL value and the actual value is known to be less than (<) the displayed result.

- The data flags in this column for the VOST Tube Set are the cumulative set of flags contributed by each individual train component included as part of the VOST total. A flag attached to a VOST component is carried through to the "VOST Tube Set" column when the associated component analytical result is a significant number in comparison to the VOST tube set total. That is, if the VOST Tube Set Total is affected by a VOST component analytical result, the associated flag is carried through to the VOST Tube Set Total, but if the VOST Tube Set Total is not affected by a VOST component analytical result, the associated flag is not carried through to the VOST Tube Set Total.
- ⁴ The VOST Condensate result was obtained by multiplying the sample's corresponding RDL or "hit" by the VOST condensate volume.
- ⁵ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.

- A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
- A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
- An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
- An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
- A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- ⁶ Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.
- 7. The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

Last printed 2/5/2002 7:54 AM

BECHTEL BWXT IDAHO, LLC (BBWI) INTEC HLLWE Effluent Gas Emissions Inventory Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

VOST Analytical Results Summary Table A-11. Run 2, VOST Tenax® Tube Pair Field Blank

Field Sample Name:

Volatile Organic Sampling Train (VOST)

Sample Description:

VOST Tenax® Tube Pair Field Blank for Volatile Organic Compounds Analysis

Field Sample Number(s):

A-3392

STL Sample Number(s).

H1F250144-019

	CAS Registry			Tenax® T Field (μg/Sa	Blank		
Analyte	Number	Lab Result ¹	MDL ²	RDL ³	RL⁴	Risk Result ⁵	Flag ⁶
Acetone	67-64-1	0.027	0.024	0.063	0.10	< 0.063	J,B
Acrylonitrile	107-13-1	ND	0.11	0.29	0.50	< 0.29	
Benzene	71-43-2	ND	0.0064	0.017	0.025	< 0.017	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Bromobenzene	108-86-1	ND	0.0039	0.010	0.025	< 0.010	
Bromochloromethane	74-97-5	ND	0.0056	0.015	0.025	< 0.015	
Bromodichloromethane	75-27-4	ND	0.0042	0.011	0.025	< 0.011	,
Bromoform	75-25-2	ND	0.0074	0.019	0.025	< 0.019	
Bromomethane	74-83-9	ND	0.0059	0.015	0.050	< 0.015	,
2-Butanone	78-93-3	ND	0.038	0.10	0.10	< 0.10	
n-Butylbenzene	104-51-8	ND	0.0061	0.016	0.025	< 0.016	
sec-Butylbenzene	135-98-8	ND	0.0032	0.0084	0.025	< 0.0084	
tert-Butylbenzene	98-06-6	ND	0.0062	0.016	0.025	< 0.016	
Carbon disulfide	75-15-0	ND	0.0070	0.018	0.025	< 0.018	
Carbon tetrachloride	56-23-5	ND	0.0069	0.018	0.025	< 0.018	
Chlorobenzene	108-90-7	ND	0.0032	0.0084	0.025	< 0.0084	
Chlorodibromomethane	124-48-1	ND	0.0056	0.015	0.025	< 0.015	
Chloroethane	75-00 - 3	ND	0.0068	0.018	0.050	< 0.018	
Chloroform	67-66-3	ND	0.0070	0.018	0.025	< 0.018	
Chloromethane	74-87-3	ND	0.0048	0.013	0.050	< 0.013	
2-Chlorotoluene	95-49-8	ND	0.0018	0.0047	0.025	< 0.0047	
4-Chlorotoluene	106-43-4	ND	0.0018	0.0047	0.025	< 0.0047	
1,2-Dibromo-3-chloropropane	96-12-8	ND	0.011	0.029	0.050	< 0.029	
1,2-Dibromoethane	106-93-4	ND	0.0075	0.020	0.025	< 0.020	
Dibromomethane	74-95-3	ND	0.0064	0.017	0.025	< 0.017	
1,2-Dichlorobenzene	95-50-1	ND	0.0077	0.020	0.025	< 0.020	
1,3-Dichlorobenzene	541-73-1	ND	0.0038	0.010	0.025	< 0.010	
1,4-Dichlorobenzene	106-46-7	ND	0.0055	0.014	0.025	< 0.014	
Dichlorodifluoromethane	75-71-8	ND	0.0051	0.013	0.025	< 0.013	

VOST Analytical Results Summary (Continued)
Table A-11. Run 2, VOST Tenax® Tube Pair Field Blank

	CAS Registry	,	I Tellax	Tenax [®] T Field (μg/Sa	Blank		
Analyte	Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result ⁵	Flag ⁶
1,1-Dichloroethane	75-34-3	ND	0.0064	0.017	0.025	< 0.017	
1,2-Dichloroethane	107-06-2	ND	0.0066	0.017	0.025	< 0.017	
1,1-Dichloroethene	75-35-4	ND	0.0067	0.018	0.025	< 0.018	
cis-1,2-Dichloroethene	156-59-2	ND	0.0062	0.016	0.025	< 0.016	
trans-1,2-Dichloroethene	156-60-5	ND	0.0074	0.019	0.025	< 0.019	
1,2-Dichloropropane	78-87-5	ND	0.0049	0.013	0.025	< 0.013	
1,3-Dichloropropane	142-28-9	ND	0.0073	0.019	0.025	< 0.019	
2,2-Dichloropropane	594-20-7	ND	0.0070	0.018	0.025	< 0.018	
1,1-Dichloropropene	563-58-6	ND	0.0077	0.020	0.025	< 0.020	
cis-1,3-Dichloropropene	10061-01-5	ND	0.0046	0.012	0.025	< 0.012	
trans-1,3-Dichloropropene	10061-02-6	ND	0.0059	0.015	0.025	< 0.015	
Ethylbenzene	100-41-4	ND	0.0035	0.0092	0.025	< 0.0092	
Hexachlorobutadiene	87-68-3	ND	0.012	0.031	0.025	< 0.025	
2-Hexanone	591-78-6	ND	0.024	0.063	0.10	< 0.063	
Isopropylbenzene	98-82-8	ND	0.0024	0.0063	0.025	< 0.0063	
p-lsopropyltoluene	99-87-6	ND	0.0044	0.012	0.025	< 0.012	
Methylene chloride	75-09-2	0.025	0.016	0.042	0.025	0.025	В
4-Methyl-2-pentanone	108-10-1	ND	0.027	0.071	0.10	< 0.071	
Naphthalene	91-20-3	ND	0.014	0.037	0.025	< 0.025	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
n-Propylbenzene	103-65-1	ND	0.0021	0.0055	0.025	< 0.0055	
Styrene	100-42-5	ND	0.0026	0.0068	0.025	< 0.0068	
1,1,1,2-Tetrachloroethane	630-20-6	ND	0.0037	0.0097	0.025	< 0.0097	
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.0097	0.025	0.025	< 0.025	
Tetrachloroethene	127-18-4	ND	0.0062	0.016	0.025	< 0.016	
Toluene	108-88-3	ND	0.0025	0.0066	0.025	< 0.0066	
1,2,3-Trichlorobenzene	87-61-6	ND	0.014	0.037	0.025	< 0.025	
1,2,4-Trichlorobenzene	120-82-1	ND	0.013	0.034	0.025	< 0.025	
1,1,1-Trichloroethane	71-55-6	ND	0.0082	0.022	0.025	< 0.022	
1,1,2-Trichloroethane	79-00-5	ND	0.0070	0.018	0.025	< 0.018	
Trichloroethene	79-01-6	ND	0.0065	0.017	0.025	< 0.017	
Trichlorofluoromethane	75-69-4	ND	0.0068	0.018	0.050	< 0.018	
1,2,3-Trichloropropane	96-18-4	ND	0.010	0.026	0.025	< 0.025	
1,2,4-Trimethylbenzene	95-63-6	ND	0.0029	0.0076	0.025	< 0.0076	

VOST Analytical Results Summary (Continued)
Table A-11. Run 2, VOST Tenax® Tube Pair Field Blank

	CAS Registry		Tenax [®] Tube Pair Field Blank (µg/Sample)									
Analyte	Number	Lab Result ¹	MDL ²	RDL ³	RL⁴	Risk Result ⁵	Flag ⁶					
1,3,5-Trimethylbenzene	108-67-8	ND	0.0019	0.0050	0.025	< 0.0050						
Vinyl chloride	75-01-4	ND	0.0025	0.0066	0.025	< 0.0066						
m-Xylene & p-Xylene	136777-61-2	ND	0.025	0.066	0.050	< 0.050						
o-Xylene	95-47-6	ND	0.0025	0.0066	0.025	< 0.0066						

Surrogate Recoveries:

Surrogate Compound	Percent Recovery (%)	Limits (%)
		70.1500 /
Dibromofluoromethane	76%	50-150%
1,2-Dichloroethane-d ₄	70%	50-150%
Toluene-d ₈	102%	50-150%
Bromofluorobenzene	86%	50-150%

BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

VOST Analytical Results Summary (Continued) Table A-11. Run 2, VOST Tenax[®] Tube Pair Field Blank

Sample Collection and Analysis Dates:

	Date
Date(s) Collected:	June 21, 2001
Date(s) of Extraction:	July 02, 2001
Date(s) of Analysis:	July 02, 2001

Sample Collection. Preparation. and Analysis Dates:

SW-846 Method 0031:

"Sampling Method for Volatile Organic Compounds (SMVOC)"

SW-846 Method 5041A:

"Analysis for Desorption of Sorbent Cartridges from Volatile Organic Sampling Train (VOST)"

SW-846 Method 8260B: "Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)"

VOST Tentatively Identified Compound (TIC) Summary

TIC ⁷	CAS Number	Approximate Retention Time (min.)	Sample Result (μg)	TIC Flag ⁶
Hexane, 3-methyl-	589-34-4	4.46	0.028	N,J,M

Footnotes:

- ¹ This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- ² This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- ⁴ The RL is the laboratory Reporting Limit (RL).
- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
 - When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - ♦ When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
 - When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
 - It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- ⁶ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - ♦ A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value
 - A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
 - ♦ A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
 - An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral
 evidence.
 - An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
 - ♦ A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

VOST Analytical Results Summary Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

Field Sample Name:

Volatile Organic Sampling Train (VOST)

Sample Description:

VOST Anasorb 747 Tube Field Blank for Volatile Organic Compounds Analysis

Field Sample Number(s): STL Sample Number(s).

A-3393 H1F250144-020

	CAS Registry				747 Tube Blank Imple)		
Analyte	Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result ⁵	Flag ⁶
Acetone	67-64-1	0.034	0.024	0.063	0.10	< 0.063	J,B
Acrylonitrile	107-13-1	ND	0.11	0.29	0.50	< 0.29	
Benzene	71-43-2	ND	0.0064	0.017	0.025	< 0.017	
Bromobenzene	108-86-1	ND	0.0039	0.010	0.025	< 0.010	
Bromochloromethane	74-97-5	ND	0.0056	0.015	0.025	< 0.015	
Bromodichloromethane	75-27-4	ND	0.0042	0.011	0.025	< 0.011	
Bromoform	75-25-2	ND	0.0074	0.019	0.025	< 0.019	
Bromomethane	74-83-9	ND	0.0059	0.015	0.050	< 0.015	
2-Butanone	78-93-3	ND	0.038	0.10	0.10	< 0.10	
n-Butylbenzene	104-51-8	ND	0.0061	0.016	0.025	< 0.016	
sec-Butylbenzene	135-98-8	ND	0.0032	0.0084	0.025	< 0.0084	
tert-Butylbenzene	98-06-6	ND	0.0062	0.016	0.025	< 0.016	
Carbon disulfide	75-15-0	ND	0.0070	0.018	0.025	< 0.018	
Carbon tetrachloride	56-23-5	ND	0.0069	0.018	0.025	< 0.018	
Chlorobenzene	108-90-7	ND	0.0032	0.0084	0.025	< 0.0084	
Chlorodibromomethane	124-48-1	ND	0.0056	0.015	0.025	< 0.015	
Chloroethane	75-00-3	ND	0.0068	0.018	0.050	< 0.018	
Chloroform	67-66-3	ND	0.0070	0.018	0.025	< 0.018	
Chloromethane	74-87-3	ND	0.0048	0.013	0.050	< 0.013	
2-Chlorotoluene	95-49-8	ND	0.0018	0.0047	0.025	< 0.0047	
4-Chlorotoluene	106-43-4	ND	0.0018	0.0047	0.025	< 0.0047	
1,2-Dibromo-3-chloropropane	96-12-8	ND	0.011	0.029	0.050	< 0.029	
1,2-Dibromoethane	106-93-4	ND	0.0075	0.020	0.025	< 0.020	
Dibromomethane	74-95-3	ND	0.0064	0.017	0.025	< 0.017	
1,2-Dichlorobenzene	95-50-1	ND	0.0077	0.020	0.025	< 0.020	
1,3-Dichlorobenzene	541-73-1	ND	0.0038	0.010	0.025	< 0.010	
1,4-Dichlorobenzene	106-46-7	ND	0.0055	0.014	0.025	< 0.014	
Dichlorodifluoromethane	75-71-8	ND	0.0051	0.013	0.025	< 0.013	

VOST Analytical Results Summary (Continued) Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

	CAS Registry	Anasorb 747 Tube Field Blank (µg/Sample)						
Analyte	Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result ⁵	Flag ⁶	
1,1-Dichloroethane	75-34-3	ND	0.0064	0.017	0.025	< 0.017		
	107-06-2	ND	0.0066	0.017	0.025	< 0.017		
1,2-Dichloroethane		ND	0.0067	0.017	0.025	< 0.017		
1,1-Dichloroethene	75-35-4		0.0062	***************************************	0.025	< 0.016		
cis-1,2-Dichloroethene	156-59-2	ND		0.016				
trans-1,2-Dichloroethene	156-60-5	ND	0.0074	0.019	0.025	< 0.019		
1,2-Dichloropropane	78-87-5	ND	0.0049	0.013	0.025	< 0.013		
1,3-Dichloropropane	142-28-9	ND	0.0073	0.019	0.025	< 0.019		
2,2-Dichloropropane	594-20-7	ND	0.0070	0.018	0.025	< 0.018		
1,1-Dichloropropene	563-58-6	ND	0.0077	0.020	0.025	< 0.020		
cis-1,3-Dichloropropene	10061-01-5	ND	0.0046	0.012	0.025	< 0.012		
trans-1,3-Dichloropropene	10061-02-6	ND	0.0059	0.015	0.025	< 0.015		
Ethylbenzene	100-41-4	ND	0.0035	0.0092	0.025	< 0.0092		
Hexachlorobutadiene	87-68-3	ND	0.012	0.031	0.025	< 0.025		
2-Hexanone	591-78-6	ND	0.024	0.063	0.10	< 0.063		
Isopropylbenzene	98-82-8	ND	0.0024	0.0063	0.025	< 0.0063	***************************************	
p-Isopropyltoluene	99-87-6	ND	0.0044	0.012	0.025	< 0.012	,,,,	
Methylene chloride	75-09-2	0.027	0.016	0.042	0.025	0.027	В	
4-Methyl-2-pentanone	108-10-1	ND	0.027	0.071	0.10	< 0.071		
Naphthalene	91-20-3	ND	0.014	0.037	0.025	< 0.025		
n-Propylbenzene	103-65-1	ND	0.0021	0.0055	0.025	< 0.0055		
Styrene	100-42-5	ND	0.0026	0.0068	0.025	< 0.0068		
1,1,1,2-Tetrachloroethane	630-20-6	ND	0.0037	0.0097	0.025	< 0.0097		
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.0097	0.025	0.025	< 0.025		
Tetrachloroethene	127-18-4	ND	0.0062	0.016	0.025	< 0.016		
Toluene	108-88-3	0.12	0.0025	0.0066	0.025	0.12		
1,2,3-Trichlorobenzene	87-61-6	ND	0.014	0.037	0.025	< 0.025		
1,2,4-Trichlorobenzene	120-82-1	ND	0.013	0.034	0.025	< 0.025		
1,1,1-Trichloroethane	71-55-6	ND	0.0082	0.022	0.025	< 0.022		
1,1,2-Trichloroethane	79-00-5	ND	0.0070	0.018	0.025	< 0.018		
Trichloroethene	79-01-6	ND	0.0065	0.017	0.025	< 0.017	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Trichlorofluoromethane	75-69-4	ND	0.0068	0.018	0.050	< 0.018		
1,2,3-Trichloropropane	96-18-4	ND	0.010	0.026	0.025	< 0.025	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1,2,4-Trimethylbenzene	95-63-6	ND	0.0029	0.0076	0.025	< 0.0076		

VOST Analytical Results Summary (Continued)
Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

Analyte	CAS Registry Number	Anasorb 747 Tube Field Blank (μg/Sample)							
		Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result ⁵	Flag ⁶		
1,3,5-Trimethylbenzene	108-67-8	ND	0.0019	0.0050	0.025	< 0.0050			
Vinyl chloride	75-01-4	ND	0.0025	0.0066	0.025	< 0.0066			
m-Xylene & p-Xylene	136777-61-2	ND	0.025	0.066	0.050	< 0.050			
o-Xylene	95-47-6	ND	0.0025	0.0066	0.025	< 0.0066			

Surrogate Recoveries:

Surrogate Compound	Percent Recovery (%)	Laboratory Recovery Limits (%)	
Dibromofluoromethane	77%	50-150%	
1,2-Dichloroethane-d ₄	68%	50-150%	
Toluene-d ₈	99%	50-150%	
Bromofluorobenzene	73%	50-150%	

BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

VOST Analytical Results Summary (Continued) Table A-12. Run 2, VOST Anasorb 747 Tube Field Blank

Sample Collection and Analysis Dates:

	Date		
Date(s) Collected:	June 21, 2001		
Date(s) of Extraction:	July 02, 2001		
Date(s) of Analysis:	July 02, 2001		

Sample Collection. Preparation. and Analysis Dates:

SW-846 Method 0031:

"Sampling Method for Volatile Organic Compounds (SMVOC)"

SW-846 Method 5041A: SW-846 Method 8260B:

"Analysis for Desorption of Sorbent Cartridges from Volatile Organic Sampling Train (VOST)"

"Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)"

VOST Tentatively Identified Compound (TIC) Summary

TIC ⁷	CAS Number	Approximate Retention Time (min.)	Sample Result (µg)	TIC Flag ⁶
Cyclohexane, methyl-	108-87-2	5.32	0.17	N,J,M
Hexane, 2,4-dimethyl-	589-43-5	5.40	0.16	N,J,M
Cyclopentane, ethyl-	1640-89-7	5.49	0.044	N,J,M
Pentane, 2,3-dimethyl-	565-59-3	4.36	0.30	N,J,M
Pentane, 3,3-dimethyl-	562-49-2	4.13	0.064	N,J,M
Hexane, 2-methyl-	591-76-4	4.30	0.26	N,J,M

Footnotes:

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- The RL is the laboratory Reporting Limit (RL).
- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
 - ♦ When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
 - When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
 - It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - An "E" flag indicates that the result exceeded the upper calibration range. The analytical result is therefore an estimated value.
 - ♦ A "J" flag indicates that this compound was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
 - A "B" flag indicates that this compound was found in the associated laboratory method blank. Under these conditions this value is regarded as an estimated value.
 - A "Y" flag indicates that this compound is an indistinguishable isomer as a tentatively identified compound (TIC).
 - An "N" flag indicates that there is presumptive evidence that this compound is present in the sample based on spectral evidence.
 - An "M" flag indicates that this result was measured against the nearest internal standard and assumed a response factor of one (1).
 - A "D" flag indicates that this result was obtained by a dilution of the sample. The original analysis yielded an analytical result that exceeded the calibration range.
- The tentatively identified compounds (TICs) were identified by conducting a mass spectral library search using the NBS library of data.

	· ·		

M5 Particulate and Anion Train - Run 1 **Analytical Results Summary** Table A-13. HLLWE Run ID: 0050-STRT-1

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3308 and A-3309

STL Sample No.:

H1F210104-001 and H1F210104-002

Analyte	Particulate Filter	Acetone Probe Rinse	Particulate ¹
	Particulate Weight	Particulate Weight	Total
	(µg)	(µg)	(Total µg of Particulate)
Particulate	100 B	3,400	3,500 B

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

0.1N H₂SO₄ Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3310

STL Sample No.:

H1F210104-003

Analyte	Laboratory Result ² (Total mg)	MDL^3	RDL^4	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chloride (as HCl) ⁸	1.9	1.7	4.5	2.9	< 2.9	В
Fluoride (as HF) ⁹	ND	0.075	0.20	1.5	< 0.20	
Nitrate (as HNO ₃) ¹⁰	11	0.072	0.19	0.72	11	
Nitrite (as HNO ₂) ¹¹	ND	0.073	0.19	0.73	< 0.19	

M5 Particulate and Anion Train - Run 1 **Analytical Results Summary (Continued)** Table A-13. HLLWE Run ID: 0050-STRT-1

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3311

STL Sample No.:

H1F210104-004

				(Total mg) ⁶	Flag ⁷
ND	0.16	0.42	0.29	< 0.29	
ND	0.075	0.20	1.5	< 0.20	
0.85	0.014	0.037	0.14	0.85	
1.4	0.073	0.19	0.73	1.4	
	0.85	0.85 0.014	0.85 0.014 0.037	0.85 0.014 0.037 0.14	0.85 0.014 0.037 0.14 0.85

Sample Collection and Analysis Dates:

	Particulate Filter	Acetone Probe Rinse	0.1N H ₂ SO ₄ Impinger Composite	0.1N NaOH Impinger Composite
Date(s) Collected:	June 07, 2001	June 07, 2001	June 07, 2001	June 07, 2001
Date(s) of Preparation-Analysis:	June 22-26, 2001	June 25-26, 2001	June 29, 2001	July 02, 2001

Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

M5 Particulate and Anion Train - Run 1 Analytical Results Summary (Continued) Table A-13. HLLWE Run ID: 0050-STRT-1

Footnotes:

1 The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

- ³ This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- ⁴ The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- ⁵ The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:
 - When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
 - ♦ When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.
 - When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.
 - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

 A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.
- The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of Cl⁻
$$\times \frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl' in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-13. 0050-STRT-1.DOC Last printed on 2/5/2002 10:50 AM2/5/2002 at 10:50 AM

² This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

M5 Particulate and Anion Train - Run 1 Analytical Results Summary (Continued) Table A-13. HLLWE Run ID: 0050-STRT-1

⁹ The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F⁻
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{mgF})}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and 19.00 = the atomic weight of F⁻ in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₃ in the Impinger Composite is as follows:

Total mg(HNO₃) = mg of NO₃⁻ ×
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO₃ in mg/mg-mole and 62.00 = the molecular weight of NO₃ in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₂ in the Impinger Composite is as follows:

Total mg(HNO₂) = mg of NO₂⁻ ×
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2^-)}$$

Where: 47.01 = the molecular weight of HNO₂ in mg/mg-mole and 46.01 = the molecular weight of NO₂ in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl₂ in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS₂O₃ prior to the analysis of chlorine.

M5 Particulate and Anion Train - Run 3 Analytical Results Summary Table A-14. HLLWE Run ID: 0050-END-1

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3338 and A-3339

STL Sample No.:

H1F210104-018 and H1F210104-019

Analyte	Particulate Filter	Acetone Probe Rinse	Particulate ¹
	Particulate Weight	Particulate Weight	Total
	(µg)	(µg)	(Total μg of Particulate)
Particulate	300 B	2,600	2,900 В

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

0.1N H₂SO₄ Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3340

STL Sample No.:

H1F210104-020

Analyte	Laboratory Result ² (Total mg)	MDL ³	RDL⁴	RL⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chloride (as HC!) ⁸	2.1	1.7	4.4	2.9	< 2.9	В
Fluoride (as HF) ⁹	ND	0.075	0.20	1.5	< 0.20	
Nitrate (as HNO ₃) 10	9.8	0.072	0.19	0.72	9.8	
Nitrite (as HNO ₂) ¹¹	ND	0.073	0.19	0.73	< 0.19	

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

M5 Particulate and Anion Train - Run 3 **Analytical Results Summary (Continued)** Table A-14. HLLWE Run ID: 0050-END-1

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3341 H1F210104-021

STL Sample No.:

Analyte	Laboratory Result ² (Total mg)	MDL^3	RDL⁴	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chlorine (as Cl ₂) 12	0.42	0.32	0.85	0.57	< 0.57	В
Fluoride (as HF) ⁹	ND	0.075	0.20	1.5	< 0.20	
Nitrate (as HNO ₃) ¹⁰	0.61	0.014	0.038	0.14	0.61	
Nitrite (as HNO ₂) 11	3.6	0.029	0.076	0.29	3.6	

Sample Collection and Analysis Dates:

	Particulate Filter	Acetone Probe Rinse	0.1N H ₂ SO ₄ Impinger Composite	0.1N NaOH Impinger Composite	
Date(s) Collected:	June 07, 2001	June 07, 2001	June 07, 2001	June 07, 2001	
Date(s) of Preparation- Analysis:	June 22-26, 2001	June 25-26, 2001	June 29, 2001	July 02, 2001	

Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

M5 Particulate and Anion Train - Run 3 Analytical Results Summary (Continued) Table A-14. HLLWE Run ID: 0050-END-1

Footnotes:

The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

⁵ The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:

• When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.

• When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.

• It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.

This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:

A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.
 A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg_(HCl) = mg of Cl⁻
$$\times \frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-14. 0050-END-1.DOC Last printed on 2/5/2002 11:11 AM2/5/2002 at 11:11 AM

A14.3-4

M5 Particulate and Anion Train - Run 3 Analytical Results Summary (Continued) Table A-14. HLLWE Run ID: 0050-END-1

⁹ The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg_(HF) = mg of F⁻
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{mgF}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and 19.00 = the atomic weight of F⁻ in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₃ in the Impinger Composite is as follows:

Total mg(HNO₃) = mg of NO₃⁻ ×
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3)}$$

Where: 63.01 = the molecular weight of HNO₃ in mg/mg-mole and 62.00 = the molecular weight of NO₃ in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₂ in the Impinger Composite is as follows:

Total mg(HNO₂) = mg of NO₂⁻ ×
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2^-)}$$

Where: 47.01 = the molecular weight of HNO₂ in mg/mg-mole and 46.01 = the molecular weight of NO₂ in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl₂ in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS₂O₃ prior to the analysis of chlorine.

M5 Particulate and Anion Train - Run 2 Analytical Results Summary Table A-15. HLLWE Run ID: 0050-STRT-2

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3312 and A-3313

STL Sample No.:

H1F210104-005 and H1F210104-006

Analyte	Particulate Filter	Acetone Probe Rinse	Particulate ¹	
	Particulate Weight	Particulate Weight	Total	
	(μg)	(µg)	(Total µg of Particulate)	
Particulate	600	500	1,100	

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

0.1N H₂SO₄ Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3314

STL Sample No.:

H1F210104-007

Analyte	Laboratory Result ² (Total mg)	MDL ³	RDL⁴	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chloride (as HCl) ⁸	1.7	1.6	4.3	2.9	< 2.9	В
Fluoride (as HF) ⁹	ND	0.074	0.19	1.5	< 0.19	
Nitrate (as HNO ₃) ¹⁰	8.4	0.071	0.19	0.71	8.4	
Nitrite (as HNO ₂) ¹¹	ND	0.14	0.38	1.4	< 0.38	

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

M5 Particulate and Anion Train - Run 2 **Analytical Results Summary (Continued)** Table A-15. HLLWE Run ID: 0050-STRT-2

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3315

STL Sample No.:

H1F210104-008

Analyte	Laboratory Result ² (Total mg)	MDL^3	RDL ⁴	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chlorine (as Cl ₂) ¹²	ND	0.16	0.42	0.28	< 0.28	
Fluoride (as HF) ⁹	ND	0.074	0.19	1.5	< 0.19	
Nitrate (as HNO ₃) ¹⁰	0.22	0.014	0.037	0.14	0.22	
Nitrite (as HNO ₂) 11	1.2	0.029	0.075	0.29	1.2	

Sample Collection and Analysis Dates:

	Particulate Filter	Acetone Probe Rinse	0.1N H ₂ SO ₄ Impinger Composite	0.1N NaOH Impinger Composite
Date(s) Collected:	June 11, 2001	June 11, 2001	June 11, 2001	June 11, 2001
Date(s) of Preparation- Analysis:	June 22-26, 2001	June 25-26, 2001	June 29, 2001	July 05, 2001

Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

M5 Particulate and Anion Train - Run 2 Analytical Results Summary (Continued) Table A-15. HLLWE Run ID: 0050-STRT-2

F	'n	n	tn	n	te	2.5	3

The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

⁵ The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:

• When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.

• When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.

• It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.

⁷ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:

• A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

⁸ The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of Cl⁻
$$\times \frac{(36.46 \text{ mg HCI})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-15. 0050-STRT-2.DOC Last printed on 2/5/2002 11:14 AM2/5/2002 at 11:14 AM

A15.3-4

BECHTEL BWXT IDAHO, LLC (BBWI) INTEC HLLWE Effluent Gas Emissions Inventory Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

M5 Particulate and Anion Train - Run 2 **Analytical Results Summary (Continued)** Table A-15. HLLWE Run ID: 0050-STRT-2

The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F⁻
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{mgF}^-)}$$

20.01 = the molecular weight of HF in mg/mg-mole and Where:

19.00 = the atomic weight of F in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₃ in the Impinger Composite is as follows:

Total mg(HNO₃) = mg of NO₃⁻ ×
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

63.01 = the molecular weight of HNO₃ in mg/mg-mole and

 $62.00 = \text{the molecular weight of NO}_3$ in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₂ in the Impinger Composite is as follows:

Total mg(HNO₂) = mg of NO₂⁻ ×
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2)}$$

47.01 = the molecular weight of HNO₂ in mg/mg-mole and

46.01 = the molecular weight of NO_2 in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl₂ in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS₂O₃ prior to the analysis of chlorine.

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

M5 Particulate and Anion Train - Run 4 Analytical Results Summary Table A-16. HLLWE Run ID: 0050-END-2

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

Particulate Filter and Acetone Probe Rinse Samples for Particulate Determination

Field Sample Number(s):

A-3342 and A-3343

STL Sample No.:

H1F210104-022 and H1F210104-023

Analyte	Particulate Filter	Acetone Probe Rinse	Particulate ¹
	Particulate Weight	Particulate Weight	Total
	(µg)	(µg)	(Total µg of Particulate)
Particulate	700	100 B	800 B

Field Sample Name:

M5 HCl/Cl2 and Particulate Train

Sample Description:

0.1N H₂SO₄ Impinger Solution for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3344

STL Sample No.:

H1F210104-024

Analyte	Laboratory Result ² (Total mg)	MDL ³	RDL^4	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chloride (as HCl) ⁸	1.8	1.6	4.3	2.9	< 2.9	В
Fluoride (as HF) ⁹	ND	0.074	0.19	1.5	< 0.19	
Nitrate (as HNO ₃) ¹⁰	6.6	0.071	0.19	0.71	6.6	
Nitrite (as HNO ₂) ¹¹	ND	0.14	0.38	1.4	< 0.38	

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

M5 Particulate and Anion Train - Run 4 Analytical Results Summary (Continued) Table A-16. HLLWE Run ID: 0050-END-2

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train

Sample Description:

0.1N NaOH Impinger Solution for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s): A-3345

STL Sample No.:

H1F210104-025

Analyte	Laboratory Result ² (Total mg)	MDL^3	RDL⁴	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chlorine (as Cl ₂) 12	ND	0.16	0.42	0.29	< 0.29	
Fluoride (as HF) ⁹	ND	0.075	0.20	1.5	< 0.20	
Nitrate (as HNO ₃) 10	0.51	0.014	0.038	0.14	0.51	
Nitrite (as HNO ₂) ¹¹	2.7	0.015	0.038	0.15	2.7	

Sample Collection and Analysis Dates:

	Particulate	Acetone	0.1N H ₂ SO ₄ Impinger	0.1N NaOH Impinger
	Filter	Probe Rinse	Composite	Composite
Date(s) Collected: Date(s) of Preparation- Analysis:	June 11, 2001 June 22-26, 2001	June 11, 2001 June 25-26, 2001	June 11, 2001 June 29, 2001	June 11, 2001 July 05, 2001

Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056:

"Determination of Inorganic Anions by Ion Chromatography"

M5 Particulate and Anion Train - Run 4 Analytical Results Summary (Continued) Table A-16. HLLWE Run ID: 0050-END-2

Footnotes:

1 The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

- ³ This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:
 - When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
 - ♦ When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.
 - When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.
 - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.
- ⁷ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - ♦ A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

 A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.
- The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of Cl⁻
$$\times \frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HIL\WE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-16. 0050-END-2.DOC Last printed on 2/5/2002 11:16 AM2/5/2002 at 11:16 AM

² This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

M5 Particulate and Anion Train - Run 4 Analytical Results Summary (Continued) Table A-16. HLLWE Run ID: 0050-END-2

The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F⁻
$$\times \frac{(20.01 \,\text{mgHF})}{(19.00 \,\text{mgF}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and

 $19.00 = \text{the atomic weight of } F^{-} \text{ in mg/mg-mole.}$

The calculation of the total milligrams (mg) of HNO₃ in the Impinger Composite is as follows:

Total mg(HNO₃) = mg of NO₃⁻ ×
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO₃ in mg/mg-mole and

62.00 = the molecular weight of NO_3 in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₂ in the Impinger Composite is as follows:

Total mg(HNO₂) = mg of NO₂⁻ ×
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2^-)}$$

Where: $47.01 = \text{the molecular weight of HNO}_2 \text{ in mg/mg-mole and}$

46.01 = the molecular weight of NO_2^- in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl₂ in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS₂O₃ prior to the analysis of chlorine.

Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks **Analytical Results Summary**

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train Reagent Blanks

Sample Description:

Particulate Filter and Acetone Probe Rinse Reagent Blanks for Particulate Determination

Field Sample Number(s):

A-3316 and A-3317

STL Sample No.:

H1F210104-009 and H1F210104-010

Analyte	Particulate Filter	Acetone Probe Rinse	Particulate ¹
	Particulate Weight	Particulate Weight	Total
	(μg)	(µg)	(Total µg of Particulate)
Particulate	500 U	500 U	1,000 U

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train Reagent Blanks

Sample Description: Field Sample Number(s): 0.1N H₂SO₄ Impinger Solution Reagent Blanks for Chloride, Fluoride, Nitrate, and Nitrite Analysis

A-3318

STL Sample No.:

H1F210104-011

Analyte	Laboratory Result ² (Total mg)	MDL^3	RDL ⁴	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chloride (as HCl) ⁸	1.6	1.2	3.0	2.0	< 2.0	В
Fluoride (as HF) ⁹	ND	0.052	0.14	1.0	< 0.14	
Nitrate (as HNO ₃) ¹⁰	ND	0.020	0.053	0.20	< 0.053	
Nitrite (as HNO ₂) ¹¹	ND	0.10	0.27	1.0	< 0.27	

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks **Analytical Results Summary (Continued)**

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train Reagent Blanks

Sample Description:

0.1N NaOH Impinger Solution Reagent Blanks for Chlorine, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3319

STL Sample No.:

H1F210104-012

Analyte	Laboratory Result ² (Total mg)	MDL^3	RDL⁴	RL ⁵	Risk Result (Total mg) ⁶	Flag ⁷
Chlorine (as Cl ₂) 12	ND	0.11	0.30	0.20	< 0.20	
Fluoride (as HF) ⁹	ND	0.11	0.28	2.1	< 0.28	
Nitrate (as HNO ₃) 10	0.012	0.010	0.027	0.10	< 0.027	В
Nitrite (as HNO ₂) 11	ND	0.010	0.027	0.10	< 0.027	

Sample Collection and Analysis Dates:

	Particulate	Acetone	0.1N H ₂ SO ₄ Impinger	0.1N NaOH Impinger
	Filter	Probe Rinse	Composite	Composite
Date(s) Collected: Date(s) of Preparation-Analysis:	June 11, 2001 June 22-26, 2001	June 11, 2001 June 25-26, 2001	June 11, 2001 June 29, 2001	June 11, 2001 July 05, 2001

Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056:

"Determination of Inorganic Anions by Ion Chromatography"

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-17. 0050-STRT-2

Last printed on 2/5/2002 12:07 PM2/5/2002 at 12:07 PM

Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks Analytical Results Summary (Continued)

Footnotes:

1 The Total M-5 Particulate result is the sum of the acetone probe rinse particulate weight and the particulate filter particulate weight.

² This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

⁵ The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:

• When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.

• When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.

• When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.

• It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.

This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:

• A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

Total mg (HCI) = mg of CI⁻
$$\times \frac{(36.46 \text{ mg HCI})}{(35.45 \text{ mg CI}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl⁻ in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-17. 0050-STRT-2 RBS.DOC

Last printed on 2/5/2002 12:07 PM2/5/2002 at 12:07 PM

Table A-17. M5 Particulate and Anion Train - Run 2 Reagent Blanks Analytical Results Summary (Continued)

The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg_(HF) = mg of F⁻
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{ mg F}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and

19.00 = the atomic weight of F in mg/mg-mole.

The calculation of the total milligrams (mg) of HNO₃ in the Impinger Composite is as follows:

Total mg(HNO₃) = mg of NO₃⁻ ×
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO₃ in mg/mg-mole and

62.00 = the molecular weight of NO₃ in mg/mg-mole.

11 The calculation of the total milligrams (mg) of HNO₂ in the Impinger Composite is as follows:

Total mg(HNO₂) = mg of NO₂⁻ ×
$$\frac{(47.01 \text{ mg HNO}_2)}{(46.01 \text{ mg NO}_2^-)}$$

Where: $47.01 = \text{the molecular weight of HNO}_2 \text{ in mg/mg-mole and}$

46.01 = the molecular weight of NO_2 in mg/mg-mole.

No additional calculation was required to be performed to obtain the total milligrams (mg) of Cl₂ in the NaOH Impinger Composite. Note that the NaOH Impingers were treated with NaS₂O₃ prior to the analysis of chlorine.

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

Table A-18. M5 Particulate and Anion Train Run 2 INTEC Deionized Water Reagent Blank **Analytical Results Summary**

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train INTEC D.I. Water Reagent Blank

Sample Description:

INTEC D.I. Water Reagent Blank for Chloride, Fluoride, Nitrate, and Nitrite Analysis

Field Sample Number(s):

A-3349

STL Sample No.:

H1F210104-013

Analyte	Laboratory Result ¹ (Total mg)	MDL ²	RDL^3	RL^4	Risk Result (Total mg) ⁵	Flag ⁶
Chloride (as HCl) ⁷	ND	0.060	0.16	0.10	< 0.10	
Fluoride (as HF) ⁸	ND	0.0054	0.014	0.11	< 0.014	
Nitrate (as HNO ₃) ⁹	0.0058	0.0052	0.014	0.052	< 0.014	В
Nitrite (as HNO ₂) ¹⁰	ND	0.01	0.014	0.052	< 0.014	

Sample Collection and Analysis Dates:

Date(s) Collected:	June 11, 2001
Date(s) of Preparation-Analysis:	June 29, 2001

Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056: "Determination of Inorganic Anions by Ion Chromatography"

Table A-18. M5 Particulate and Anion Train Run 2 INTEC Deionized Water Reagent Blank Analytical Results Summary (Continued)

Footnotes:

This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the method detection limit (MDL).

- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL). The RDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- ⁴ The RL is the laboratory Reporting Limit (RL). The RL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.
- The **bolded** value for each analyte is the value or default value assigned to the analyte. This value was determined using the following guidelines:
 - ♦ When the analytical result is greater than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the "Risk Result" is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the default value is the RDL.
 - ♦ When the analytical result is not detected down to the MDL, the "Risk Result" is the RDL.
 - It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is used as the risk result.
- ⁶ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

 A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

Total mg(HCl) = mg of Cl⁻ ×
$$\frac{(36.46 \text{ mg HCl})}{(35.45 \text{ mg Cl}^-)}$$

Where: 36.46 = the molecular weight of HCl in mg/mg-mole and 35.45 = the atomic weight of Cl⁻ in mg/mg-mole.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-18. 0050-STRT- DI H20 RB.DOC

Last printed on 2/5/2002 12:12 PM2/5/2002 at 12:12 PM

This value is the laboratory MDL derived according to requirements outlined in 40 CFR Part 136, Appendix B. The MDL has been calculated as Cl₂, HCl, HF, HNO₃, or HNO₂, as appropriate.

⁷ The calculation of the total milligrams (mg) of HCl in the Impinger Composite is as follows:

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

Table A-18. M5 Particulate and Anion Train Run 2 INTEC Deionized Water Reagent Blank Analytical Results Summary (Continued)

⁸ The calculation of the total milligrams (mg) of HF in Impinger Composite is as follows:

Total mg(HF) = mg of F⁻
$$\times \frac{(20.01 \text{ mgHF})}{(19.00 \text{ mgF}^-)}$$

Where: 20.01 = the molecular weight of HF in mg/mg-mole and

19.00 = the atomic weight of F in mg/mg-mole.

⁹ The calculation of the total milligrams (mg) of HNO₃ in the Impinger Composite is as follows:

Total mg(HNO₃) = mg of NO₃⁻ ×
$$\frac{(63.01 \text{ mg HNO}_3)}{(62.00 \text{ mg NO}_3^-)}$$

Where: 63.01 = the molecular weight of HNO₃ in mg/mg-mole and

62.00 = the molecular weight of NO₃ in mg/mg-mole.

¹⁰ The calculation of the total milligrams (mg) of HNO₂ in the Impinger Composite is as follows:

Total mg(
$$HNO_2$$
) = mg of $NO_2^- \times \frac{(47.01 \text{ mg } HNO_2)}{(46.01 \text{ mg } NO_2^-)}$

Where: 47.01 = the molecular weight of HNO₂ in mg/mg-mole and

46.01 = the molecular weight of NO_2 in mg/mg-mole.

,				

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

Table A-19. M5 Particulate and Anion Train Final Acetone Probe Rinse Analytical Results Summary

Field Sample Name:

M5 HCl/Cl₂ and Particulate Train Final Acetone Probe Rinse Final Acetone Probe Rinse for Particulate Determination

Sample Description: Field Sample Number(s):

A-3346

STL Sample No.:

H1G030222-001

Analyte	Final Acetone Probe Rinse Particulate Weight (μg) ¹
Particulate	6,200

Final Acetone Probe Rinse
June 25, 2001
July 03-06, 2001

Preparation and Analysis Methods:

EPA Method 5:

"Particulate Emissions from Stationary Sources"

SW-846 Method 9056:

"Determination of Inorganic Anions by Ion Chromatography"

Footnotes:

- 1 This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" flag indicates that this analyte was analyzed for, but was not detected down to the MDL.

A "B" flag indicates that the result for this analyte was below the RL and is therefore considered to be an estimated value.

Last saved by Robin Gifford on E:\MY DOCUMENTS\HLLWE SAMPLING\FINAL REPORT\APPENDIX A\TABLE A-19. 0050_FINAL PR.DOC

Last printed on 2/5/2002 12:16 PM2/5/2002 at 12:16 PM

•			

Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 1 Train Totals Metallic Analyte Analytical Results Summary Table A-20. HLLWE Run ID: 0060-STRT-1

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description:

Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

	CAS Registry	MMT Front Half Composite ¹ (μg)		MMT Back Half Composite ² (μg)		MMT Sampling Train Totals ³ (Total μg)		Project Specific
Analyte	Number	Risk Result	Flag ⁴	Risk Result	Flag ⁴	Total ⁵	Flag	Flag ⁶
Aluminum (Al)	7429-90-5	95		42		140		A
Antimony (Sb)	7440-36-0	2.9	В	1.7	В	< 4.6	В	A
Arsenic (As)	7440-38-2	0.92	U	0.66	В	< 1.6	В	Р
Barium (Ba)	7440-39-3	4.8	В	1.9	В	6.7	В	A
Beryllium (Be)	7440-41-7	0.23	В	0.42	U	< 0.65	В	P
Cadmium (Cd)	7440-43-9	0.32	В	0.14	В	< 0.46	В	Α
Chromium (Cr)	7440-47-3	1.7		1.3		3.0		A
Cobalt (Co)	7440-48-4	1.3	В	1.4	В	< 2.7	В	A
Copper (Cu)	7440-50-8	0.94	В	3.4		4.3	В	Α
Lead (Pb)	7439-92-1	0.52	U	0.78	В	< 1.3	В	P
Manganese (Mn)	7439-96-5	2.8		16		19		A
Mercury (Hg)	7439-97-6	0.37	В	100		100		A
Nickel (Ni)	7440-02-0	3.8	В	1.2	В	< 5.0	В	A
Selenium (Se)	7782-49-2	2.4		0.78	В	3.2	В	Α
Silver (Ag)	7440-22-4	1.9	U	0.71	U	< 2.6		N
Thallium (Tl)	7440-28-0	1.0	U	1.5	U	< 2.5		N
Vanadium (V)	7440-62-2	1.3	U	1.4	U	< 2.7		N
Zinc (Zn)	7440-66-6	18		43		61		A

Footnotes:

- ¹ The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO₃/10% H₂O₂ and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO₄/10% H₂SO₄ and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO₃/10% H₂O₂ fraction, the fourth empty impinger fraction, the 4% KMnO₄/10% H₂SO₄ fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- ³ The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total μg in the Front Half) + (Total μg in the Back Half) = Total μg in the Multi-Metals Sampling Train. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g$

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- ♦ When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- ⁴ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- ⁶ Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 3 Train Totals Metallic Analyte Analytical Results Summary Table A-21. HLLWE Run ID: 0060-END-1

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description: Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

	CAS Registry	MMT Front Half Composite ¹ (μg)		MMT Back Half Composite ² (μg)		MMT Sampling Train Totals ³ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁴	Risk Result	Flag ⁴	Total ⁵	Flag	Flag ⁶
Aluminum (Al)	7429-90-5	230		38		270		A
Antimony (Sb)	7440-36-0	3.4	В	1.7	В	< 5.1	В	A
Arsenic (As)	7440-38-2	0.92	U	0.66	U	< 1.6		N
Barium (Ba)	7440-39-3	8.5	В	1.6	В	10	В	A
Beryllium (Be)	7440-41-7	0.23	U	0.42	В	< 0.65	В	P
Cadmium (Cd)	7440-43-9	0.68		0.14	В	< 0.82	В	A
Chromium (Cr)	7440-47-3	3.4		1.3		4.7		A
Cobalt (Co)	7440-48-4	1.3	U	1.4	U	< 2.7		N
Copper (Cu)	7440-50-8	2.2	В	1.4	В	3.6	В	A
Lead (Pb)	7439-92-1	0.52	В	0.78	В	< 1.3	В	A
Manganese (Mn)	7439-96-5	5.4		18		23		A
Mercury (Hg)	7439-97-6	0.37	В	150		150		A
Nickel (Ni)	7440-02-0	4.9		1.1	В	< 6.0	В	A
Selenium (Se)	7782-49-2	1.5		0.63	U	< 2.1		P
Silver (Ag)	7440-22-4	1.9	U	0.71	U	< 2.6		N
Thallium (Tl)	7440-28-0	1.0	U	1.4	U	< 2.4		N
Vanadium (V)	7440-62-2	1.3	U	1.4	U	< 2.7		N
Zinc (Zn)	7440-66-6	89		30		120		A

Footnotes:

- ¹ The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO₃/10% H₂O₂ and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO₄/10% H₂SO₄ and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO₃/10% H₂O₂ fraction, the fourth empty impinger fraction, the 4% KMnO₄/10% H₂SO₄ fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total μg in the Front Half) + (Total μg in the Back Half) = Total μg in the Multi-Metals Sampling Train. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g$

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- ⁴ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.

- A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- ⁶ Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 2 Train Totals Metallic Analyte Analytical Results Summary Table A-22. HLLWE Run ID: 0060-STRT-2

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description:

Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

	CAS Registry	MMT Front Half Composite ¹ (μg)		MMT Back Half Composite ² (μg)		MMT Sampling Train Totals ³ (Total µg)		Project Specific
Analyte	Number	Risk Result	Flag ⁴	Risk Result	Flag ⁴	Total ⁵	Flag	Flag ⁶
Aluminum (Al)	7429-90-5	42		34		76		A
Antimony (Sb)	7440-36-0	2.8	В	1.7	В	< 4.5	В	A
Arsenic (As)	7440-38-2	0.92	U	0.66	U	< 1.6		N
Barium (Ba)	7440-39-3	3.5	В	1.6	В	5.1	В	A
Beryllium (Be)	7440-41-7	0.23	В	0.42	U	< 0.65	В	P
Cadmium (Cd)	7440-43-9	0.13	U	0.14	В	< 0.27	В	P
Chromium (Cr)	7440-47-3	1.3		1.2		2.5		A
Cobalt (Co)	7440-48-4	1.3	U	1.4	. U	< 2.7		N
Copper (Cu)	7440-50-8	0.66	В	1.6	В	< 2.3	В	A
Lead (Pb)	7439-92-1	0.52	U	0.89	В	< 1.4	В	P
Manganese (Mn)	7439-96-5	16		22		38		A
Mercury (Hg)	7439-97-6	0.37	В	110	•	110		A
Nickel (Ni)	7440-02-0	3.3	В	1.2	В	< 4.5	В	Α
Selenium (Se)	7782-49-2	2.0		0.63	В	< 2.6	В	A
Silver (Ag)	7440-22-4	1.9	U	0.71	U	< 2.6		N
Thallium (Tl)	7440-28-0	1.0	U	1.5	U	< 2.5		N
Vanadium (V)	7440-62-2	1.3	U	1.4	U	< 2.7		N
Zinc (Zn)	7440-66-6	10		20		30		A

Footnotes:

- The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO₃/10% H₂O₂ and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO₄/10% H₂SO₄ and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO₃/10% H₂O₂ fraction, the fourth empty impinger fraction, the 4% KMnO₄/10% H₂SO₄ fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total μg in the Front Half) + (Total μg in the Back Half) = Total μg in the Multi-Metals Sampling Train. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g$

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- ⁴ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- 6 Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions

Method 0060 Multi-Metals Train (MMT) Train Total Summary - Run 4 Train Totals **Metallic Analyte Analytical Results Summary** Table A-23. HLLWE Run ID: 0060-END-2

Field Sample Name:

Method 0060 Multi-Metals Train (MMT)

Sample Description:

Method 0060 Multi-Metals Train (MMT) Totals for Metals Analysis

	CAS Registry	Front Compo	MMT Front Half Composite ¹ (μg)		MMT Back Half Composite ² (µg)		MMT Sampling Train Totals³ (Total μg)	
Analyte	Number	Risk Result	Flag ⁴	Risk Result	Flag ⁴	Total ⁵	Flag	Flag ⁶
Aluminum (Al)	7429-90-5	44		29		73		A
Antimony (Sb)	7440-36-0	2.4	В	1.7	В	< 4.1	В	A
Arsenic (As)	7440-38-2	0.92	U	0.66	U	< 1.6		N
Barium (Ba)	7440-39-3	3.6	В	1.1	В	4.7	В	A
Beryllium (Be)	7440-41-7	0.23	U	0.42	В	< 0.65	В	P
Cadmium (Cd)	7440-43-9	0.13	U	0.14	U	< 0.27		N
Chromium (Cr)	7440-47-3	1.2		3.9		5.1		A
Cobalt (Co)	7440-48-4	1.3	U	1.4	U	< 2.7		N
Copper (Cu)	7440-50-8	0.66	U	0.71	В	< 1.4	В	P
Lead (Pb)	7439-92-1	0.52	U	0.68	В	< 1.2	В	P
Manganese (Mn)	7439-96-5	23		49		72		A
Mercury (Hg)	7439-97-6	0.37	В	110		110		A
Nickel (Ni)	7440-02-0	3.0	В	1.1	В	< 4.1	В	A
Selenium (Se)	7782-49-2	1.7		0.63	В	< 2.3	В	- A
Silver (Ag)	7440-22-4	1.9	U	0.71	U	< 2.6		N
Thallium (Tl)	7440-28-0	1.0	U	1.4	U	< 2.4		N
Vanadium (V)	7440-62-2	1.3	U	1.4	U	< 2.7		N
Zinc (Zn)	7440-66-6	6.6		10		17		A

Footnotes:

- ¹ The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO₃/10% H₂O₂ and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO₄/10% H₂SO₄ and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO₃/10% H₂O₂ fraction, the fourth empty impinger fraction, the 4% KMnO₄/10% H₂SO₄ fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total μg in the Front Half) + (Total μg in the Back Half) = Total μg in the Multi-Metals Sampling Train. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g$

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- ♦ When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- ♦ When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- ⁴ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - ♦ A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.

- A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.
- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- ⁶ Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

Method 0060 Multi-Metals Blank Train (MMT) Train Total Summary **Run 2 Blank Train Totals Metallic Analyte Analytical Results Summary** Table A-24. HLLWE Run ID: 0060-BT-1

Field Sample Name:

Method 0060 Multi-Metals Blank Train (MMT)

Method 0060 Multi-Metals Blank Train (MMT) Totals for Metals Analysis Sample Description:

	CAS Registry	MMT Front Half Composite ¹ (μg)		Back I Compo	MMT Back Half Composite ² (µg)		MMT Sampling Train Totals ³ (Total µg)	
Analyte	Number	Risk Result	Flag ⁴	Risk Result	Flag ⁴	Total ⁵	Flag	Flag ⁶
Aluminum (Al)	7429-90-5	46		29		75		A
Antimony (Sb)	7440-36-0	2.5	В	1.7	В	< 4.2	В	A
Arsenic (As)	7440-38-2	0.92	В	0.66	U	< 1.6	В	P
Barium (Ba)	7440-39-3	3.4	В	1.3	В	4.7	В	A
Beryllium (Be)	7440-41-7	0.23	U	0.42	U	< 0.65		N
Cadmium (Cd)	7440-43-9	0.13	U	0.14	В	< 0.27	В	P
Chromium (Cr)	7440-47-3	0.66	U	0.66	U	< 1.3		N
Cobalt (Co)	7440-48-4	1.3	U	1.4	U	< 2.7		N
Copper (Cu)	7440-50-8	0.66	U	0.71	В	< 1.4	В	P
Lead (Pb)	7439-92-1	0.52	U	0.68	В	< 1.2	В	P
Manganese (Mn)	7439-96-5	1.6		3,700		3,700		A
Mercury (Hg)	7439-97-6	0.37	U	2.7	U	< 3.1		N
Nickel (Ni)	7440-02-0	2.8	В	1.2	В	< 4.0	В	A
Selenium (Se)	7782-49-2	1.7		0.63	U	< 2.3		P
Silver (Ag)	7440-22-4	1.9	U	0.71	U	< 2.6		N
Thallium (Tl)	7440-28-0	1.0	U	1.5	U	< 2.5		N
Vanadium (V)	7440-62-2	1.3	U	1.4	U	< 2.7		N
Zinc (Zn)	7440-66-6	4.7		34		39		A

Footnotes:

- ¹ The MMT Front Half Composite consists of the Quartz Fiber Particulate Filter and the 0.1 N Nitric Acid Probe Rinse Solution.
- The MMT Back Half configuration includes seven (7) impingers. The first impinger remains empty prior to sampling and serves as a moisture knockout impinger. The second and third impingers are charged with 5% HNO₃/10% H₂O₂ and are analyzed with the first impinger contents for all of the metallic analytes including mercury. The fourth impinger is left empty and serves to protect the mercury trapping solution from carryover. Its contents and glassware rinses are analyzed separately for mercury, only. The fifth and sixth impingers contain 4% KMnO₄/10% H₂SO₄ and are also analyzed for mercury, only. The seventh impinger contains silica gel for a final scrubbing of residual moisture. The MMT back half mercury (Hg) result is the sum of the mercury in the 5% HNO₃/10% H₂O₂ fraction, the fourth empty impinger fraction, the 4% KMnO₄/10% H₂SO₄ fraction, and the 8N HCl impinger rinse fraction. The total micrograms (ug) of mercury in these fractions is included in the MMT back half result.
- The total mass for each metal found in the MMT sampling train consists of the sum of the MMT train's Front Half metals content plus the train's Back Half metals content. The calculation is as follows:

(Total μg in the Front Half) + (Total μg in the Back Half) = Total μg in the Multi-Metals Sampling Train. Therefore: $(\mu g) + (\mu g) = \text{Total } \mu g$

The MMT Sampling Train Total value was obtained by summing the MMT Front Half results and the MMT Back Half results using the following guidelines:

- When the train component analytical result is greater than the laboratory reporting limit (RL), the result included in the train total is the actual analytical result or "hit" determined by the laboratory.
- ♦ When the train component analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result included in the train total is actual analytical result or "hit" determined by the laboratory and the corresponding "B" flag is carried through the calculation to the train total.
- When the train analytical component result is less than the RDL, but greater than the method detection limit (MDL), the result included in the train total is the RDL and the corresponding "B" flag is carried through the calculation to the train total.
- ♦ When the train component analytical result is not detected down to the MDL, the result included in the train total is the RDL and the corresponding "U" flag is carried through the calculation to the train total.
- It should be noted that when the RDL is selected as the default value using the guidelines above, but the RDL is greater than the RL, the RL is included in the train total.

The data flags attached to the MMT Totals are the cumulative set of flags for each train component included as part of the MMT total. A flag attached to a MMT component is carried through to the "MMT Sampling Train Total" column when the associated component analytical result is a significant number in comparison to the MMT Total. That is, if the MMT Total is affected by a MMT component analytical result, the associated flag is carried to the MMT Train Total, but if the MMT Train Total is not affected by a MMT component, the associated flag is not carried through to the MMT Train Total. The combinations of train fractions are conducted following the standard practice of using significant figures found in ASTM E29-93a(1999), "Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications" and Severn Trent Laboratories standard operating procedure number QA-004, "Rounding and Significant Figures".

- ⁴ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

- When listed, the less than (<) sign indicates that at least one sample fraction result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value for the fraction that is included in the data set total is the default RDL value and the actual value of the total is known to be less than (<) the displayed result.
- ⁶ Entries in this column are project-specific train total flags that are applied to the run total values and are not standard EPA data flags. These project-specific flags are utilized for the INEEL NWCF HLLWE Effluent Gas Emissions Inventory project and are defined as follows:
 - An "N" flag in this column indicates that the compound was not measured (detected) in any of the sampling train components, or fractions.
 - A "P" flag in this column indicates that the compound was measured (detected) in one or more of the train components, or fractions, but not in all of the sampling train fractions.
 - An "A" flag in this column indicates that the compound was measured (detected) in all of the sampling train components, or fractions.

Table A-25. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 Front Half Composite Reagent Blank

Field Sample Name:

Method 0060 Multi-Metals Train (MMT) Front Half Composite Reagent Blanks

Sample Description:

Quartz Fiber Particulate Filter and 0.1 N Nitric Acid Probe Rinse Solution Reagent Blanks for Metals (including

Mercury) Analysis

Field Sample ID: STL Sample No.:

A-3297 and A-3298 H1F200234-011

		MMT Front Half Composite Reagent Blank Total µg							
Analyte	CAS Registry Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result for Blank Correction ⁵	Flag ⁶		
Aluminum (Al)	7429-90-5	43	5.2	14	20	43			
Antimony (Sb)	7440-36-0	2.7	0.60	1.6	6.0	2.7	В		
Arsenic (As)	7440-38-2	0.72	0.35	0.92	1.0	0.72	В		
Barium (Ba)	7440-39-3	3.6	0.35	0.92	20	3.6	В		
Beryllium (Be)	7440-41-7	0.20	0.089	0.23	0.50	0.20	В		
Cadmium (Cd)	7440-43-9	ND	0.050	0.13	0.50	0			
Chromium (Cr)	7440-47-3	0.92	0.25	0.66	1.0	0.92	В		
Cobalt (Co)	7440-48-4	ND	0.50	1.3	5.0	0			
Copper (Cu)	7440-50-8	ND	0.25	0.66	2.5	0			
Lead (Pb)	7439-92-1	ND	0.20	0.52	1.0	0			
Manganese (Mn)	7439-96-5	0.52	0.15	0.39	1.5	0.52	В		
Mercury (Hg)	7439-97-6	ND	0.14	0.37	0.40	0			
Nickel (Ni)	7440-02-0	2.9	0.44	1.2	4.0	2.9	В		
Selenium (Se)	7782-49-2	2.9	0.35	0.92	1.0	2.9			
Silver (Ag)	7440-22-4	ND	0.71	1.9	2.0	0			
Thallium (Tl)	7440-28-0	ND	0.40	1.0	2.0	0			
Vanadium (V)	7440-62-2	ND	0.50	1.3	5.0	0			
Zinc (Zn)	7440-66-6	3.1	0.23	0.60	2.0	3.1			

BECHTEL BWXT IDAHO, LLC (BBWI)

INTEC HLLWE Effluent Gas Emissions Inventory

Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

Table A-25. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 Front Half Composite Reagent Blank

Sample Collection and Analysis Dates:

Date(s) Collected:

Date(s) of Digestion (Metals):

Date(s) of Digestion (Mercury):

Date(s) of Analysis (Metals):

Date(s) of Analysis (Mercury):

June 25, 2001

June 28, 2001

Date(s) of Analysis (Mercury):

June 26, 2001

Preparation and Analysis Methods:

SW-846 Method 0060: "Determination of Metals in Stack Emissions"

SW-846 Method 7470A: "Mercury in Liquid Waste (Manual Cold Vapor Technique)" SW-846 Method 6010B: "Inductively Coupled Plasma - Atomic Emission Spectroscopy"

- ¹ This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- ² This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- ⁴ The RL is the laboratory Reporting Limit (RL).
- ⁵ The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- ⁶ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

Table A-26. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 Back Half Composite Reagent Blank

Field Sample Name:

Method 0060 Multi-Metals Train (MMT) Back Half Impingers Reagent Blank

Sample Description:

 $5\%~HNO_3$ and $10\%~H_2O_2$ Impingers Reagent Blank for Metals (including Mercury) Analysis

Field Sample ID:

A-3299

STL Sample No.:

H1F200234-012

Analyte		MMT Back Half Composite Reagent Blank Total µg							
	CAS Registry Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result for Blank Correction ⁵	Flag ⁶		
Aluminum (Al)	7429-90-5	19	3.5	9.2	23	19	В		
Antimony (Sb)	7440-36-0	0.86	0.69	1.8	6.9	0.86	В		
Arsenic (As)	7440-38-2	ND	0.26	0.68	1.1	0			
Barium (Ba)	7440-39-3	0.96	0.34	0.89	23	0.96	В		
Beryllium (Be)	7440-41-7	ND	0.17	0.45	0.57	0			
Cadmium (Cd)	7440-43-9	0.059	0.057	0.15	0.57	0.059	В		
Chromium (Cr)	7440-47-3	0.91	0.26	0.68	1.1	0.91	В		
Cobalt (Co)	7440-48-4	ND	0.57	1.5	5.7	0			
Copper (Cu)	7440-50-8	ND	0.29	0.76	2.9	0			
Lead (Pb)	7439-92-1	0.43	0.27	0.71	1.1	0.43	В		
Manganese (Mn)	7439-96-5	14	0.17	0.45	1.7	14			
Mercury (Hg)	7439-97-6	ND	0.20	0.52	0.80	0			
Nickel (Ni)	7440-02-0	0.56	0.46	1.2	4.6	0.56	В		
Selenium (Se)	7782-49-2	0.28	0.25	0.66	1.1	0.28	В		
Silver (Ag)	7440-22-4	ND	0.29	0.76	2.3	0			
Thallium (Tl)	7440-28-0	ND	0.58	1.5	2.3	0			
Vanadium (V)	7440-62-2	ND	0.57	1.5	5.7	0			
Zinc (Zn)	7440-66-6	4.7	0.51	1.3	2.3	4.7			

BECHTEL BWXT IDAHO, LLC (BBWI) INTEC HLLWE Effluent Gas Emissions Inventory Idaho National Engineering and Environmental Laboratory (INEEL)

STL Knoxville Project Number: 142503.40

Table A-26. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 Back Half Composite Reagent Blank

Sample Collection and Analysis Dates:

Date(s) Collected:

Date(s) of Digestion (Metals):

Date(s) of Digestion (Mercury):

Date(s) of Analysis (Metals):

Date(s) of Analysis (Mercury):

June 25, 2001

June 28, 2001

June 26, 2001

Preparation and Analysis Methods:

SW-846 Method 0060:

"Determination of Metals in Stack Emissions"

SW-846 Method 7470A:

"Mercury in Liquid Waste (Manual Cold Vapor Technique)"

SW-846 Method 6010B:

"Inductively Coupled Plasma - Atomic Emission Spectroscopy"

- ¹ This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- ² This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- ⁴ The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- ⁶ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

Table A-27. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 Mercury Impinger Composite Reagent Blank

Field Sample Name:

Method 0060 Multi-Metals Train (MMT) Mercury Impingers Reagent Blank

Sample Description:

4% KMnO₄ and 10% H₂SO₄ Impingers Reagent Blank for Mercury (Hg) Analysis

Field Sample ID:

A-3300

STL Sample No.:

H1F200234-013

		MMT Mercury Impinger Composite Total μg						
Analyte	CAS Registry Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result for Blank Correction ⁵	Flag ⁶	
Mercury (Hg)	7439-97-6	ND	0.10	0.26	0.42	0		

Sample Collection and Analysis Dates:

Date(s) Collected:

June 07, 2001

Date(s) of Digestion:

June 25, 2001

Date(s) of Analysis:

June 26, 2001

Preparation and Analysis Methods:

SW-846 Method 0060:

"Determination of Metals in Stack Emissions"

SW-846 Method 7470A:

"Mercury in Liquid Waste (Manual Cold Vapor Technique)"

Table A-27. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 Mercury Impinger Composite Reagent Blank

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- ² This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- ⁴ The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- ⁶ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

Table A-28. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 HCI Impinger Rinse Solution Reagent Blank

Field Sample Name:

Method 0060 Multi-Metals Train (MMT) Mercury Impinger HCl Rinse Solution Reagent Blank

Sample Description:

8N HCl Impinger Rinse Solution Reagent Blank for Mercury (Hg) Analysis

Field Sample ID:

A-3301

STL Sample No.:

H1F200234-014

		MMT 8N HCI Mercury Impinger Rinse Total µg						
Analyte	CAS Registry Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result for Blank Correction ⁵	Flag ⁶	
Mercury (Hg)	7439-97-6	ND	0.23	0.60	0.92	0		

Sample Collection and Analysis Dates:

Date(s) Collected:

June 07, 2001

Date(s) of Digestion:

June 25, 2001

Date(s) of Analysis:

June 26, 2001

Preparation and Analysis Methods:

SW-846 Method 0060:

"Determination of Metals in Stack Emissions"

SW-846 Method 7470A:

"Mercury in Liquid Waste (Manual Cold Vapor Technique)"

Table A-28. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 HCI Impinger Rinse Solution Reagent Blank

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- ² This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- ⁴ The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

Table A-29. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary Run 2 INTEC Deionized Water Reagent Blank

Field Sample Name:

INTEC Deionized (D.I.) Water Reagent Blank

Sample Description:

INTEC Deionized (D.I.) Water Reagent Blank for Metals (including Mercury) Analysis

Field Sample ID:

A-3348

STL Sample No.:

H1F200234-015

Analyte		MMT INTEC Deionized (D.I.) Water Reagent Blank Total µg							
	CAS Registry Number	Lab Result ¹	MDL ²	RDL ³	RL ⁴	Risk Result for Blank Correction ⁵	Flag ⁶		
Aluminum (Al)	7429-90-5	5.2	5.2	14	20	5.2	В		
Antimony (Sb)	7440-36-0	ND	0.60	1.6	6.0	0			
Arsenic (As)	7440-38-2	ND	0.35	0.92	1.0	0			
Barium (Ba)	7440-39-3	ND	0.35	0.92	20	0			
Beryllium (Be)	7440-41-7	0.13	0.089	0.23	0.50	0.13	В		
Cadmium (Cd)	7440-43-9	ND	0.050	0.13	0.50	0			
Chromium (Cr)	7440-47-3	ND	0.25	0.66	1.0	0			
Cobalt (Co)	7440-48-4	. ND	0.50	1.3	5.0	0			
Copper (Cu)	7440-50-8	ND	0.25	0.66	2.5	0			
Lead (Pb)	7439-92-1	ND	0.20	0.52	1.0	0			
Manganese (Mn)	7439-96-5	ND	0.15	0.39	1.5	0			
Mercury (Hg)	7439-97-6	ND	0.14	0.37	0.40	0			
Nickel (Ni)	7440-02-0	ND	0.44	1.2	4.0	0			
Selenium (Se)	7782-49-2	ND	0.35	0.92	1.0	0			
Silver (Ag)	7440-22-4	ND	0.71	1.9	2.0	0			
Thallium (Tl)	7440-28-0	ND	0.40	1.0	2.0	0			
Vanadium (V)	7440-62-2	ND	0.50	1.3	5.0	0			
Zinc (Zn)	7440-66-6	0.93	0.23	0.60	2.0	0.93	В		

Table A-29. Method 0060 Multi-Metals Train (MMT) Analytical Results Summary (Continued) Run 2 INTEC Deionized Water Reagent Blank

Sample Collection and Analysis Dates:

Date(s) Collected:

Date(s) of Digestion (Metals):

Date(s) of Digestion (Mercury):

Date(s) of Analysis (Metals):

Date(s) of Analysis (Mercury):

June 25, 2001

June 28, 2001

June 26, 2001

Preparation and Analysis Methods:

SW-846 Method 0060: "Determination of Metals in Stack Emissions"

SW-846 Method 7470A: "Mercury in Liquid Waste (Manual Cold Vapor Technique)" SW-846 Method 6010B: "Inductively Coupled Plasma - Atomic Emission Spectroscopy"

- This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- ² This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- The RL is the laboratory Reporting Limit (RL).
- The column titled "Risk Result for Blank Correction" presents a "0" for elements that were analyzed for but not detected down to the method detection limit (MDL). Method 0060 specifically calls out the criteria that are to be applied to blank correct multi-metals train (MMT) data.
- ⁶ This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

Table A-30. Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Metallic Analyte Analytical Results Summary

Field Sample Name:

Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite

Sample Description:

Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Sample for Metals (including

Mercury) Analysis

Field Sample ID:

A-3346 and A-3347

H1G030222-002 STL Sample No.:

CAS Registry	Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Sample Total µg ¹							
Number	Lab Result ²	MDL ³	RDL ⁴	RL ⁵	Risk Result ^{6,7}	Flag ⁸		
				•••				
7440-36-0	1.3	0.60	1.6	6.0	< 1.6	В		
7440-38-2	ND	0.35	0.92	1.0	< 0.92			
7440-39-3	3.2	0.35	0.92	20.0	3.2	В		
7440-41-7	ND	0.089	0.23	0.50	< 0.23			
7440-43-9	4.1	0.050	0.13	0.50	4.1			
7440-47-3	1.7	0.25	0.66	1.0	1.7			
7440-48-4	0.85	0.50	1.3	5.0	< 1.3	В		
7440-50-8	2.5	0.25	0.66	2.5	2.5			
7439-92-1	3.2	0.20	0.52	1.0	3.2			
7439-96-5	6.1	0.15	0.39	1.5	6.1			
7439-97-6	0.77	0.14	0.37	0.40	0.77			
7440-02-0	3.2	0.44	1.2	4.0	3.2	В		
7782-49-2	ND	0.35	0.92	1.0	< 0.92			
7440-22-4	1.8	0.71	1.9	2.0	< 1.9	В		
7440-28-0	ND	0.40	1.0	2.0	< 1.0			
7440-62-2	ND	0.50	1.3	5.0	< 1.3			
7440-66-6	50	0.23	0.60	2.0	50			
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-96-5 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-62-2	Number Lab Result² 7429-90-5 120 7440-36-0 1.3 7440-38-2 ND 7440-39-3 3.2 7440-41-7 ND 7440-43-9 4.1 7440-47-3 1.7 7440-48-4 0.85 7440-50-8 2.5 7439-92-1 3.2 7439-96-5 6.1 7440-02-0 3.2 7782-49-2 ND 7440-22-4 1.8 7440-28-0 ND 7440-62-2 ND	Number Lab Result ² MDL ³ 7429-90-5 120 5.2 7440-36-0 1.3 0.60 7440-38-2 ND 0.35 7440-39-3 3.2 0.35 7440-41-7 ND 0.089 7440-43-9 4.1 0.050 7440-47-3 1.7 0.25 7440-48-4 0.85 0.50 7440-50-8 2.5 0.25 7439-92-1 3.2 0.20 7439-96-5 6.1 0.15 7440-02-0 3.2 0.44 7782-49-2 ND 0.35 7440-22-4 1.8 0.71 7440-28-0 ND 0.40 7440-62-2 ND 0.50	Number Lab Result² MDL³ RDL⁴ 7429-90-5 120 5.2 14 7440-36-0 1.3 0.60 1.6 7440-38-2 ND 0.35 0.92 7440-39-3 3.2 0.35 0.92 7440-41-7 ND 0.089 0.23 7440-43-9 4.1 0.050 0.13 7440-47-3 1.7 0.25 0.66 7440-48-4 0.85 0.50 1.3 7440-50-8 2.5 0.25 0.66 7439-92-1 3.2 0.20 0.52 7439-96-5 6.1 0.15 0.39 7440-02-0 3.2 0.44 1.2 7782-49-2 ND 0.35 0.92 7440-22-4 1.8 0.71 1.9 7440-28-0 ND 0.40 1.0 7440-62-2 ND 0.50 1.3	Number Lab Result² MDL³ RDL⁴ RL⁵ 7429-90-5 120 5.2 14 20.0 7440-36-0 1.3 0.60 1.6 6.0 7440-38-2 ND 0.35 0.92 1.0 7440-39-3 3.2 0.35 0.92 20.0 7440-41-7 ND 0.089 0.23 0.50 7440-43-9 4.1 0.050 0.13 0.50 7440-47-3 1.7 0.25 0.66 1.0 7440-48-4 0.85 0.50 1.3 5.0 7440-50-8 2.5 0.25 0.66 2.5 7439-92-1 3.2 0.20 0.52 1.0 7439-96-5 6.1 0.15 0.39 1.5 7439-97-6 0.77 0.14 0.37 0.40 7440-02-0 3.2 0.44 1.2 4.0 7440-22-4 1.8 0.71 1.9 2.0 7440-28-0 ND	Number Lab Result² MDL³ RDL⁴ RL⁵ Risk Result⁶⁷ 7429-90-5 120 5.2 14 20.0 120 7440-36-0 1.3 0.60 1.6 6.0 < 1.6		

Table A-30. Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Metallic Analyte Analytical Results Summary (Continued)

Sample Collection and Analysis Dates:

Date(s) Collected:	June 25, 2001
Date(s) of Digestion (Metals):	July 08, 2001
Date(s) of Digestion (Mercury):	July 08, 2001
Date(s) of Analysis (Metals):	July 28, 2001
Date(s) of Analysis (Mercury):	July 08, 2001

Preparation and Analysis Methods:

SW-846 Method 0060: "Determination of Metals in Stack Emissions"

SW-846 Method 7470A: "Mercury in Liquid Waste (Manual Cold Vapor Technique)" SW-846 Method 6010B: "Inductively Coupled Plasma - Atomic Emission Spectroscopy"

Table A-30. Final (Post-Test) Acetone Probe Rinse and Nitric Acid Probe Rinse Composite Metallic Analyte Analytical Results Summary (Continued)

- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte and is carried through to the sampling train total, if it is determined to be significant.
- ² This value is the laboratory sample result. When the analytical result is "ND" or not detected, the laboratory analysis did not detect the analyte down to the MDL.
- This value is the laboratory Method Detection Limit (MDL) derived according to requirements outlined in 40 CFR Part 136, Appendix B.
- ⁴ The RDL is the Reliable Detection Limit. The RDL is the detection level recommended by EPA's National Research Laboratory in Cincinnati, Ohio, Environmental Monitoring Systems Laboratory (EMSL) in Cincinnati, Ohio, American Chemical Society (ACS) Committee on Environmental Improvement and the Drinking Water Standards Division (DWSD). It is defined as 2.623 times the MDL (2.623 X MDL).
- ⁵ The RL is the laboratory Reporting Limit (RL).
- Based on the selection rules, the **bolded** value is the value or default value assigned to the analyte using the following guidelines:
 - When the analytical result is greater than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is greater than the reliable detection level (RDL), but less than the laboratory reporting limit (RL), the result selected by boldface type is the actual analytical result or "hit" determined by the laboratory.
 - When the analytical result is less than the RDL, but greater than the method detection limit (MDL), the result selected by boldface type is the RDL.
 - When the analytical result is not detected down to the MDL, the result selected by boldface type is the RDL.
 - It should be noted that when the RDL is selected using the guidelines above, but the RL is less than the RDL, the RL is included as the "Risk Result".
- When listed, the less than (<) sign indicates that the sample result is either a "non-detect" value down to the MDL of the measurement that carries, or an estimated "hit" value that is below the RDL. In either case, the final value is the default RDL value and the actual value is known to be less than (<) the displayed result.
- This flag is the laboratory data flag that corresponds to EPA guidelines. The data flags for these samples are as follows:
 - A "U" qualifier indicates that this analyte was analyzed for, but was not detected down to the MDL.
 - ♦ A "B" flag indicates that this analyte was detected, but at a concentration below the laboratory RL. The analytical result is therefore an estimated value.

APPENDIX B OFFGAS SAMPLING DATA

CONTENTS

Table B-1.	SVOC-STRT-1	B1
Table B-2.	SVOC-END-1	B2
Table B-3.	SVOC-STRT-2	B3
Table B-4.	SVOC-END-2	B4
Table B-5.	0031-STRT-1	B5
Table B-6.	0031-END-1	B6
Table B-7.	0031-STRT-2	B7
Table B-8.	0031-END-2	B8
Table B-9.	0050-STRT-1	B9
Table B-10.	0050-END-1	B10
Table B-11.	0050-STRT-2	B11
Table B-12.	0050-END-2	B12
Table B-13.	0060-STRT-1	B13
Table B-14.	0060-END-1	B14
Table B-15.	0060-STRT-2	B15
Table B-16.	0060-END-2	B16
Table B-17.	SVOC emission rates – grams per second comparisons	B17
Table B-18.	0031 emission rates – grams per second comparisons	B18
Table B-19.	0050 emission rates – grams per second comparisons	B19
Table B-20.	0060 emission rates – grams per second comparisons	B20
Table B-21.	0060 blank corrected emission rates – grams per second	
	comparisons	B21
	SVOC concentration-basis	
Table B-23.	0031 concentration-basis	B23
Table B-24.	0050 concentration-basis	B24
Table B-25.	0060 concentration-basis	B25
Table B-26.	0060 blank corrected concentration-basis	B26

Table B-1. SVOC-STRT-1.

SVOC SAMPLING DATA SHEET FOR HLLWE TESTS

Site.	17/4/	ai vit acotto awillia		Sampling Location		202	MAN OEC 72	MAN OF 72 Nozzlo No				' [2004 17.24 000.	2.4	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,
5000	11554	Chyas rie-iii		Guilding	-Ocaroli.	Civi		NOZZIE NO.				10-7	131. Dr.	2 5	-1	133
Project:	01-1	01-1062-01-0866		Duct ID, inches:	ches:		T	Nozzle Size, in.	e, in.:			0.3140 Est. K:	Est. K:	6.53	Est. vs, ft/s:	25.8
Date:		6/18/2001		Static Pres	Static Pressure, in. WG:		-17.5	Pitot No.:				JM-2	JM-2 Est. DH:	0.98	0.98 Operator(s): F	FE, RW, JA
Run No.:		0010-STRT-1		Est. O2, %:			20.6	Pitot Coeff.:				0.84	0.84 Est. DGM Temperature, °F	Temperatu	re, °F	
Run Type:		TEST		Est CO2, %:	%:		0	Meter Box No.	No.			2	2 Meter Box Leak Checks:	Leak Che	cks: Pitot:	: pass
Pbar., in. Hg:	Hg:	25.238		Est. Moist., %	: %:		1.3%	ΔΗ≘∷				1.5673 Pretest	Pretest	0.004 cfm	(a)	15 in. Hg
Tambient, °F:	ij.	60		Impinger Box No.:	lox No.:		6	Y-factor:				1.0328			Pitot:	: pass
DGM vol.	DGM vol. Goal (m³):	3.00		DGM vol. (Soal (ft³):		127.080	Min. ending DGM vol. (ft ³):	g DGM vol.	(ft³):		357.541 Post-test	Post-test	0.002 cfm	0	.⊆.
Sampling	Clock	Velocity		Meter	Meter			TEM	TEMPERATURE (°F)	(4F)			Pump			
Time (min)	Time	ΔP (SW, ci)		PV α	Volume	Heated	1000	Meter			Impinger	Aux.	Vacuum	, 1%	COMMENTS	S
(111111)	(24111)	(III. WG)		(III. WG)	(cnoic ieer)	e Calle	Stack	=	ă	FIIIe		(XAU)	(in rig)			
0	8:30	0.15	0.387	1.30	230.461	260	133	72	64	263	53	45	8.0			
10	8:40	0.15	0.387	1.30	237.360	261	133	9/	65	262	49	44	8.0	102	O2 analyzer =20.5%	
20	8:50	0.15	0.387	1.30	244.556	247	133	62	29	264	20	44	8.0	106	O2 analyzer =20.5%	
30	9:00	0.15	0.387	1.30	251.562	261	132	82	89	263	46	45	8.0	103	O2 analyzer =20.5%	
40	9:10	0.15	0.387	1.30	258.689	261	132	83	70	262	45	45	8.0	105	O2 analyzer =20.5%	
50	9:20	0.15	0.387	1.30	265.823	261	132	84	7.1	261	45	47	8.0	104	O2 analyzer =20.5%	
09	9:30	0.15	0.387	1.30	272.975	261	132	84	72	262	46	48	8.0	105	O2 analyzer =20.5%	
70	9:40	0.15	0.387	1.30	280.105	261	132	85	75	261	46	49	8.0	104	O2 analyzer =20.5%	
80	9:50	0.15	0.387	1.30	287.461	261	132	85	73	264	46	50	8.0	107	O2 analyzer =20.5%	
06	10:00	0.15	0.387	1.30	294.590	261	132	86	73	262	47	50	8.0	104	O2 analyzer =20.5%	
100	10:10	0.15	0.387	1.30	301.627	261	132	87	74	263	47	50	8.0	102	O2 analyzer =20.6%	
110	10:20	0.15	0.387	1.30	308.833	261	132	87	74	262	48	51	8.0	105	O2 analyzer =20.5%	
120	10:30	0.15	0.387	1.30	315.990	261	132	88	75	263	48	50	8.0	104	.02 analyzer =20.6%	
130	10:40	0.15	0.387	1.30	323.180	261	132	88	75	262	48	51	8.0	104	O2 analyzer =20.6%	
140	10:50	0.15	0.387	1.30	330.485	261	132	89	92	261	49	55	8.0	106	O2 analyzer =20.6%	
150	11:00	0.15	0.387	1.30	337.600	261	132	89	77	262	49	50	8.0	103	O2 analyzer =20.6%	
160	11:10	0.15	0.387	1.30	344.840	261	132	88	77	261	48	49	8.0	105	O2 analyzer =20.5%	
170	11:20	0.15	0.387	1.30	352.138	261	132	06	78	262	48	49	8.0	106	O2 analyzer =20.5%	
180	11:30	0.15	0.387	1.30	359.336	261	132	90	78	262	49	49	8.0	104	END OF TEST	
Total	Total	ΔPavg		Average	Total			Average	Temperatures (°F	ıres (°F)			Max.	Ave. %I,		
180	3:00	0.150	0.387	1.30	128.875	260	132	85	73	262	48	48	8.0	104		

Table B-1. SVOC-STRT-1.

0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

				modified	Silica Gel	300-400g	804.2 Implement Wt Gain	782.0	22.2	Impiper Vol Gain		0.0	
တ	A-3355		Acid Scrub Section	modified	2N NaOH Silic	100 mL 300-	730.8	732.2	-1.4				14.0
·	ra No.:			short stem	None	Empty	573.6	572.8	0.8	0.0	0.0	0.0	
Impinger Box no.:	XAD trap Quanterra No.:		lmp-2	S-5	Organics free water	100 mL	690.5	8.069	-0.3	100.0	100.0	0.0	6.0
			1mp-1	modified	Organics	100 mL	6.929	677.7	-0.8	100.0	100.0	0.0	6.0
HLLWE Offgas Tie-in			K0-1	short stem	None	Empty	544.6	541.7	2.9	0.0	0.0	0.0	
	6/18/2001	0010-STRT-1	XAD	trap	XAD-2	20 - 40g, dry	272.8	272.1	0.7				
Site:	Date:	Run No.:	Component:	Type:	Reagent:	Nominal Contents:	Post-test Wt., g:	Pre-test Wt., g:	Wt. Gain, g:	Post-test Volume:	Pre-test Volume:	Volume Gain:	Post-test pH:

	Filter Lot #	STL-A4023	OF water Lot #	QCLAB-1	NaOH Lot #	000381
02%	20.6					
CO2%	0.0					

Record impinger change-out and other important information below:

Table B-1. SVOC-STRT-1.

FIELD DATA CALCULATIONS

Project: Run Date:	01-1062- 6/18/		!
Run Identification:	0010-S	TRT-1	
PARAMETER	SYMBOL	UNITS	
Absolute Pressure in the Duct	Pabs	in. Hg	23.951
Average Duct Gas Temperature	Ts	R	592
Average Meter Temperature	Tm	R	538
Average Gas Oxygen Content	Co2,m	%	20.6
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	24.1
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	110.435
Sample Volume (SI)	VmStdm	dscm	3.127
Average Sampling Rate	Qm	dscf/m	0.614
Volume of Water Vapor	VwStd	scf	1.136
Volume of Water Vapor (SI)	VwStdm	scm	0.0322
Moisture Fraction	Bws	-	0.010
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.71
Gas Velocity at Nozzle	vn	ft/s	25.8
Gas Velocity at Nozzle (SI)	vnm	m/s	7.86
Average Gas Velocity	vncor	ft/s	21.77
Dry Offgas Flow Rate	Qsd	dscf/h	43,494
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,231.6
Actual Offgas Flow Rate	Q	acf/h	61,566
Intermediate Isokinetic Rate	li	%	104.6
Final Isokinetic Rate	ı	%	104.3

Table B-1. SVOC-STRT-1.

Project: 01-1062-01-0866
Run Date: 6/18/2001
Run Identification: 0010-STRT-1
Run Type: TEST
Lab Report Date: 8/28/2001
Lab Report Status: (preliminary or final)

RESULTS

without blank corrections
 final presentation should be rounded to two significant digits

fina)	Finai	L_									
	<u></u>		ON	CENTRATION		D= : Chandend	_		AAS	S FLOW RATE	S	
		Actual		Standard (µg/scm)	'	Dry Standard (µg/dscm)		μg/min	l	grams/sec		lb/h
Acenaphthene	<	(µg/acm) 2.214e0	_	3.1e0	<	3.1e0	<	6.4e1	<	1.1e-6	<	8.5e-6
Acenaphthylene Acenaphthylene	<	2.21480 2.1e0		3.0e0		3.0e0		6.2e1		1.0e-6		8.2e-6
Acetophenone	<.J	1.1e1	<,J	1.6e1				3.2e2				4.3e-5
Aniline	<	2.5e1	<	3.5e1	<,0	3.5e1	<,0	7.2e2	<'`	1.2e-5	<,~	9.6e-5
Anthracene	<	2.1e0	<	3.0e0	<	3.0e0		6.2e1	<	1.0e-6	<	8.2e-6
Benzidine	<	1.5e2	<	2.1e2		2.1e2		4.4e3	<	7.3e-5	<	5.8e-4
Benzoic acid	E	1.1e3	E	1.6e3		1.6e3		3.2e4	İΕ	5.4e-4	E	4.3e-3
Benzo(a)anthracene	<	2.7e0	<	3.8e0	<	3.8e0	<	7.9e1	<	1.3e-6	<	1.0e-5
Benzo(a)pyrene	<	2.9e1	<	4.1e1	<	4.2e1	<	8.5e2	<	1.4e-5	<	1.1e-4
Benzo(b)fluoranthene	<	6.8e1	<	9.5e1	<	9.6e1	<	2.0e3	<	3.3e-5	<	2.6e-4
Benzo(g,h,i)perylene	<	3.8e1	<	5.4e1	<	5.4e1	<	1.1e3		1.9e-5	<	1.5e-4
Benzo(k)fluoranthene	<_	9.7e1	<	1.4e2	<	1.4e2		2.8e3	<	4.7e-5	<	3.7e-4
Benzyl alcohol	<	1.3e2	<	1.8e2		1.8e2		3.7e3		6.2e-5	<	4.9e-4
bis(2-Chloroethoxy)methane	<	2.3e0	<	3.2e0	,	3.2e0		6.6e1	<	1.1e-6	<	8.7e-6
bis(2-Chloroethyl)ether	<	2.5e0	<	3.5e0	1	3.5e0	<	7.2e1	<	1.2e-6	<	9.6e-6
bis(2-Ethylhexyl)phthalate	<,J	2.7e1	<,J	3.8e1				7.9e2			<,J	1.0e-4
4-Bromophenyl-phenylether	<	2.1e0	<	3.0e0	1	3.0e0	<	6.2e1	<	1.0e-6	<	8.2e-6
Butylbenzylphthalate	<	2.9e0	<	4.1e0		4.2e0	<	8.5e1	<	1.4e-6	<	1.1e-5
Carbazole	<	2.9e0	<	4.1e0		4.2e0		8.5e1	<	1.4e-6	<	1.1e-5
4-Chloro-3-methylphenol	< <	3.8e0	<	5.4e0		5.4e0		1.1e2	<	1.9e-6	<	1.5e-5
4-Chloroaniline		2.0e1	<	2.8e1		2.9e1	<	5.9e2	<	9.8e-6	<	7.8e-5
2-Chloronaphthalene	<	2.1e0	<	2.9e0	1	3.0e0		6.1e1	<	1.0e-6	<	8.1e-6
2-Chlorophenol	<	2.5e0	<	3.5e0	1	3.5e0		7.2e1	<	1.2e-6	<	9.6e-6
4-Chlorophenyl phenyl ether	<	2.5e0	<	3.5e0		3.5e0	<	7.2e1	<	1.2e-6		9.6e-6
Chrysene	<	2.7e0	<	3.8e0		3.8e0		7.9e1	<	1.3e-6	< - 1	1.0e-5 8.7e-5
Di-n-butylphthalate	<,J	2.3e1	<,J	3.2e1				6.6e2 1.1e3			ر,> ار,>	0.7e-5
Di-n-octylphthalate	<,J <	3.6e1 3.8e1	<,J	5.1e1 5.4e1		5.1e1 5.4e1	<,J <	1.1e3	7,3	1.9e-5	\ \ '`	1.4e-4
Dibenz(a,h)anthracene	<	2.5e0	~	3.5e0		3.5e0		7.2e1	<	1.2e-6	'	9.6e-6
Dibenzofuran 1,2-Dichlorobenzene	<	2.5e0 2.5e0	<	3.5e0 3.5e0		3.5e0 3.5e0		7.2e1	<	1.2e-6	<	9.6e-6
1,3-Dichlorobenzene	`	2.5e0 2.7e0	<	3.8e0		3.8e0	2	7.2e1 7.9e1	~	1.3e-6	<	1.0e-5
1,4-Dichlorobenzene	<,J	3.6e0	- <.J	5.1e0				1.1e2	1			1.4e-5
3,3'-Dichlorobenzidine	<	2.5e1	<	3.5e1		3.5e1		7.2e2		1.2e-5	<	9.6e-5
2,4-Dichlorophenol	<	2.9e0	<	4.1e0		4.2e0		8.5e1	<	1.4e-6	<	1.1e-5
Diethylphthalate	<,J	3.6e0	<,J	5.1e0	1		1	1.1e2	<,J		<.J	1.4e-5
Dimethyl phthalate	< '-	2.2e0	<'-	3.0e0		3.1e0	<	6.3e1	<	1.1e-6	<	8.3e-6
2,4-Dimethylphenol	<	1.3e1	<	1.9e1	<	1.9e1	<	3.9e2	<	6.5e-6	<	5.1e-5
4,6-Dinitro-2-methylphenol	<	2.9e1	<	4.1e1	<	4.2e1	<	8.5e2	<	1.4e-5	<	1.1e-4
2,4-Dinitrophenol	<	6.1e1	<	8.5e1	<	8.6e1	<	1.8e3	<	3.0e-5	<	2.3e-4
2,4-Dinitrotoluene	<	2.9e0	<	4.1e0	<	4.2e0	<	8.5e1	<	1.4e-6	<	1.1e-5
2,6-Dinitrotoluene	<	2.7e0	<	3.8e0	<	3.8e0	<	7.9e1	<	1.3e-6	٧	1.0e-5
1,2-Diphenylhydrazine	<	2.2e0	<	3.1e0	<	3.1e0	<	6.4e1	<	1.1e-6	<	8.5e-6
Fluoranthene	<	2.3e0	<	3.2e0	<	3.2e0	<	6.6e1	<	1.1e-6	<	8.7e-6
Fluorene	<	2.3e0	<	3.2e0	<	3.2e0	<	6.6e1	<	1.1e-6	<	8.7e-6
Hexachlorocyclopentadiene	<	3.6e1	<	5.1e1		5.1e1	<	1.1e3	<	1.8e-5	<	1.4e-4
Hexachlorobenzene	<	2.5e0	<	3.5e0		3.5e0		7.2e1	<	1.2e-6	<	9.6 e- 6
Hexachlorobutadiene	<	3.4e0	<	4.7e0		4.8e0		9.8e1	<	1.6e-6	<	1.3e-5
Hexachloroethane	<	3.6e0	<	5.1e0		5.1e0		1.1e2	<	1.8e-6	<	1.4e-5
Indeno(1,2,3-cd)pyrene	<	3.4e1	<	4.7e1		4.8e1		9.8e2	<	1.6e-5	<	1.3e-4
Isophorone	<	2.3e0	<	3.2e0	<	3.2e0	<	6.6e1	<	1.1e-6	<	8.7e-6
2-Methylnaphthalene	<	2.3e0	<			3.2e0	<	6.6e1	<	1.1e-6	<	8.7e-6
2-Methylphenol	<u>_</u>	1.1e1	<_	1.5e1	<	1.5e1	<	3.1e2		5.1e-6	<	4.1e-5
3-Methylphenol & 4-Methylphenol	<	7.7e0	<	1.1e1	<	1.1e1		2.2e2		3.7e-6	<	3.0e-5
N-Nitroso-di-n-propylamine	<	2.5e0	<	3.5e0	<	3.5e0		7.2e1	<	1.2e-6	<	9.6e-6
N-Nitrosodimethylamine	<	2.5e0	<	3.5e0	<	3.5e0	ı	7.2e1	<	1.2e-6	<	9.6e-6
N-Nitrosodiphenylamine	<	3.4e0	<	4.7e0	<u> </u>	4.8e0	<	9.8e1	<	1.6e-6	<	1.3e-5
Naphthalene	<	2.5e0	<	3.5e0	<	3.5e0	<	7.2e1	<	1.2e-6	<	9.6e-6
2-Nitroaniline	<	2.5e0	<			3.5e0		7.2e1	<	1.2e-6	<	9.6e-6
3-Nitroaniline	<		<	1.3e1		1.3e1	1	2.7e2		4.5e-6		3.6e-5
4-Nitroaniline	<	8.1e0	<	1.1e1	<_	1.2e1	<	2.4e2	<	3.9e-6	<u> </u>	3.1e-5

Table B-1. SVOC-STRT-1.

Project: 01-1062-01-0866
Run Date: 6/18/2001
Run Identification: 0010-STRT-1
Run Type: TEST
Lab Report Date: 8/28/2001
Lab Report Status: (preliminary or final)

RESULTS

without blank corrections
 final presentation should be rounded to two significant digits

tii	nal)		<u> </u>									
		(CONCEN	ITRATION					/IASS F	LOW RATI	EŞ	
	Ad	tual	Sta	ndard	Dry S	tandard	l					
	(µg.	acm)	(µg	/scm)	(µg/	dscm)	μί	g/min	gra	ms/sec		lb/h
Nitrobenzene	<,J	3.6e0	<,J	5.1e0	<,J	5.1e0	<,J	1.1e2	<,J	1.8e-6	<,J	1.4e-5
2-Nitrophenol	<	2.1e1	<	2.9e1	<	2.9e1	<	6.0e2	<	1.0e-5	<	7.9e-5
4-Nitrophenol	ال,>	1.7e1	<,J	2.4e1	<,J	2.4e1	<,J	5.0e2	<,J	8.3e-6	<,J	6.6e-5
2,2'-Oxybis(1-chloropropane)	<	3.2e0	<	4.4e0	<	4.5e0	<	9.2e1	<	1.5e-6	<	1.2e-5
Pentachlorobenzene	<	2.3e0	<	3.2e0		3.2e0	<	6.6e1	<	1.1e-6	<	8.7e-6
Pentachloronitrobenzene	<	2.5e0	<	3.5e0	<	3.5e0	<	7.2e1	<	1.2e-6	<	9.6e-6
Pentachiorophenol	<	6.8e1	<	9.5e1	<	9.6e1	<	2.0e3	<	3.3e-5	<	2.6e-4
Phenanthrene	<	2.2e0		3.1e0	<	3.1e0		6.4e1		1.1e-6		8.5e-6
Phenol	<	1.7e1	<	2.4e1	<	2.5e1	<	5.1e2	<	8.4e-6	<	6.7e-5
Pyrene	<	2.3e0	<	3.2e0	<	3.2e0	<	6.6e1	<	1.1e-6	<	8.7e-6
Pyridine	<	3.8e0	<	5.4e0	<	5.4e0	<	1.1e2	<	1.9e-6	<	1.5e-5
1,2,4,5-Tetrachlorobenzene	<	2.5e0	<	3.5e0	<	3.5e0	<	7.2e1	<	1.2e-6	<	9.6e-6
1,2,4-Trichlorobenzene	<	2.7e0	<	3.8e0	<	3.8e0	<	7.9e1	<	1.3e-6	<	1.0e-5
2,4,5-Trichlorophenol	<	5.6e0	<	7.9e0	<	8.0e0	<	1.6e2	<	2.7e-6	<	2.2e-5
2,4,6-Trichlorophenol	<	3.6e0	<	5.1e0	<	5.1e0	<	1.1e2	<	1.8e-6	<	1.4e-5
TICs			1									
Furan, 2,5-dimethyl-	N,J,M	3.2e0	N,J,M	4.4e0	N,J,M	4.5e0	N,J,M	9.2e1	N,J,M	1.5e-6	N,J,M	1.2e-5
3-Hexanone	N,J,M	4.3e1	N,J,M	6.0e1	N,J,M	6.1e1	N,J,M	1.2e3	N,J,M	2.1e-5	N,J,M	1.6e-4
2-Hexanone	N,J,M	5.2e1	N,J,M	7.3e1	N,J,M	7.4e1	N,J,M	1.5e3	N,J,M	2.5e-5	N,J,M	2.0e-4
Octane, 3-methyl-	N,J,M	1.8e0	N,J,M	2.5e0	N,J,M	2.5e0	N,J,M	5.2e1	N,J,M	8.6e-7	N,J,M	6.9e-6
Benzaldehyde	N,J,M	2.5e2	N,J,M	3.5e2	N,J,M	3.5e2	N,J,M	7.2e3	N,J,M	1.2e-4	N,J,M	9.6e-4
Dodecane	N,J,M	1.5e1	N,J,M	2.1e1	N,J,M	2.1e1	N,J,M	4.4e2	N,J,M	7.3e-6	N,J,M	5.8e-5
Tridecane	N,J,M	4.5e0	N,J,M	6.3e0	N,J,M	6.4e0	N,J,M	1.3e2	N,J,M	2.2e-6	N,J,M	1.7e-5
Tetradecane	N,J,M	1.9e0	N,J,M	2.7e0	N,J,M	2.8e0	N,J,M	5.6e1	N,J,M	9.4e-7	N,J,M	7.5e-6
Pentadecane	N,J,M	3.4e0	N,J,M	4.7e0	N,J,M	4.8e0	N,J,M	9.8e1	N,J,M	1.6e-6	N,J,M	1.3e-5
Phosphoric acid tributyl ester	N,J,M	5.2e0	N,J,M	7.3e0	N,J,M	7.4e0	N,J,M	1.5e2	N,J,M	2.5e-6	N,J,M	2.0e-5
Cyclododecane	N,J,M	7.0e0	N,J,M	9.8e0	N,J,M	9.9e0	N,J,M	2.0e2	N,J,M	3.4e-6	N,J,M	2.7e-5
Heptadecane	N,J,M	2.0e0	N,J,M	2.8e0	N,J,M	2.8e0	N,J,M	5.8e1	N,J,M	9.7e-7	N,J,M	7.7e-6
Eicosane	N,J,M	1.4e0	N,J,M	1.9e0	N,J,M	2.0e0	N,J,M	4.0e1	N,J,M	6.7e-7	N,J,M	5.3e-6
Hexadecanoic acid	N,J,M	1.2e0	N,J,M		N,J,M	1.7e0	N,J,M	3.5e1	N,J,M	5.9e-7		4.7e-6
Octadecanoic acid	N,J,M	8.1e-1	N,J,M	1.1e0	N,J,M	1.2e0	N,J,M	2.4e1	N,J,M	3.9e-7	N,J,M	3.1e-6
Phosphine oxide, triphenyl-	N,J,M	2.0e0	N,J,M	2.8e0	N,J,M	2.8e0	N,J,M	5.7e1	N,J,M	9.5e-7	N,J,M	7.6e-6
Heneicosane	N,J,M	4.5e-1		6.3e-1	N,J,M	6.4e-1	N,J,M	1.3e1	N,J,M	2.2e-7	N,J,M	1.7e-6
Tetratetracontane	N.J.M	1.5e0	N,J,M	2.1e0	N,J,M	2.1e0	N,J,M	4.3e1	N,J,M	7.2e-7	N,J,M	5.7e-6
Heptane, 2,5-dimethyl-							'					
Heptane, 2,3-dimethyl-											1	
Benzaldehyde, ethyl-												
Octodecane			i								İ	
Nonacosane							1		ĺ			
Hexatriacontane							1					
Tetracosane					*****						i	
Tetratriacontane			l				1				l	

Table B-2. SVOC-END-1.

SVOC SAMPLING DATA SHEET FOR HLLWE TESTS

				ة ا	אואם פאוום זואור	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֟֓֓֓֓֓֓֡֓֟֓֓֓֡֓֓֡֓֡֓֡֓֡֓֡֡֓֡	אוור נ	-		 נ	2				
Site:		HLLWE Offgas Tie-in Sampling Location:	Sampling	Location:	MA	N-0FG-73	MAN-OFG-73 Nozzle No.				2-01	2-01 Est. DP:	0.14	Est. Tstack, °F:	133
Project:		01-1062-01-0866 Duct ID, inches:	Duct ID, ir	nches:		12	Nozzle Size, in.:	e, in.:			0.3140 Est. K:	Est. K:	7.67	Est. vs, ft/s:	25.0
Date:		6/18/2001	Static Pre	6/18/2001 Static Pressure, in. WG:		-17.5	Pitot No.:				JM-2	JM-2 Est. DH:	1.07	Operator(s):	FE/RW
Run No.:		0010-END-1 Est. O2, %:	Est. O2, 9	%:		20.5	Pitot Coeff.:				0.84	Est. DGM	0.84 Est. DGM Temperature, °F	re, °F	80
Run Type:		test	test Est CO2, %:	%:		0	Meter Box No	No.			2	Meter Box	2 Meter Box Leak Checks:		Pitot: pass
Pbar., in. Hg:	Hg:	25.176	Est. Moist., %:	t., %:		1.3%	1.3% ∆H≘:				1.5673 Pretest	Pretest	0.001	0.001 cfm @ 15.5	in. Hg
Tambient, °F	, °F:	70	Impinger Box No.	Box No.:		9	Y-factor:				1.0328			ild.	Pitot: pass
DGM vol.	DGM vol. Goal (m³):	3.00	DGM vol. Goal (ft3	Goal (ft³):		127.080	127.080 Min. ending DGM vol. (ft ³):	g DGM vol.	(ft³):		486.849 Post-test	Post-test	0.000 cfm	8	in. Hg
Sampling	Clock	Velocity	Meter	Meter			TEM	TEMPERATURE (°F)	.°F)			Pump			
Time	Time	AP (W2)	. VH ΩW, vi	Volume	Heated	d		ter		Impinger	Aux.	Vacuum	1%	COMMENTS	ENTS
(millin.)	15:00	(m. we)	(III. WG)	359 769	257	132	2 8	75	762	Z Z	(XAU)	(in. rig)		202-20 5	
10	15:10	0.14	1.30	366.680	257	132	88	92	263	3 4	51	6.7	104	02=20.5	
20	15:20	0.14	1.25	373.830	257	131	06	78	262	46	51	7.5	107	02=20.5	
30	15:30	0.14	1.25	380.845	252	131	91	79	261	47	51	7.5	105	02=20.5	
40	15:40	0.14	1.25	387.920	255	131	93	80	262	47	52	7.5	105	02=20.5	
50	15:50	0.14	1.25	395.020	250	131	94	81	262	48	52	7.5	105	02=20.5	
09	16:00	0.14	1.25	402.150	249	131	94	82	261	48	53	7.5	106	02=20.5	
70	16:10	0.14	1.25	409.290	249	131	95	82	261	47	51	7.5	106	02=20.6	
80	16:20	0.14	1.25	416.870	249	131	95	82	261	46	50	7.6	112	02=20.5	
06	16:30	0.14	1.25	423.600	249	131	95	82	262	46	50	7.5	100	02=20.6	
100	16:40	0.14	1.25	430.740	249	131	95	83	261	46	50	7.5	106	02=20.5	
110	16:50	0.14	1.25	437.900	249	131	95	83	262	46	51	9.7	106	02=20.6	
120	17:00	0.14	1.25	445.075	249	131	95	83	262	46	51	7.5	106	02=20.5	
130	17:10	0.14	1.25	452.200	249	131	95	83	260	46	52	7.5	105	02=20.5	
140	17:20	0.14	1.25	459.330	249	131	95	83	261	47	52	7.5	106	02=20.5	
150	17:30	0.14	1.25	466.570	249	131	95	82	260	47	52	7.5	107	02=20.5	
160	17:40	0.14	1.25	473.610	249	131	95	82	260	47	51	7.5	104	02=20.5	
170	17:50	0.14	1.25	480.770	249	131	94	82	260	46	51	7.5	106	02=20.5	
180	18:00	0.14	1.25	487.903	249	131	94	82	261	46	50	7.5	106	02=20.6	
Total	Total	ΔPavg	Average	Total			Average	Average Temperatures (°F	rres (°F)			Max.	Ave. %i		
180	3:00	0.140	1.26	128.134	251	131	93	81	261	47	51	7.9	106	Avg. 02=20.5	

Table B-2. SVOC-END-1.

0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

							Impinger Wt. Gain		26.4	Impinger Vol. Gain		0.0		
				modified	Silica Gel	300-400g	802.8	781.2	21.6					
6	A-3405		Acid Scrub Section	modified	2N NaOH	100 mL	731.0	730.7	0.3				14.0	QCLAB-381
'	a No.:			short stem	None	Empty	574.2	572.8	1.4	0.0	0.0	0.0		NaOH Lot #
Impinger Box no.:	XAD trap Quanterra No.:		lmp-2	G-S	Organics free water	100 mL	691.5	691.1	0.4	100.0	100.0	0.0	0.9	QCLAB-1
			lmp-1	modified	Organics	100 mL	6.989	687.8	6.0-	100.0	100.0	0.0	6.0	OF water Lot #
as Tie-in			KO-1	short stem	None	Empty	534.9	532.0	2.9	0.0	0.0	0.0		STL-A4023
HLLWE Offgas Tie-in	6/18/2001	0010-END-1	XAD	trap	XAD-2	20 - 40g, dry	301.4	300.7	7.0					Filter Lot #
Site:	Date: _	Run No.:	Component:	Туре:	Reagent:	Nominal Contents:	Post-test Wt., g:	Pre-test Wt., g:	Wt. Gain, g:	Post-test Volume:	Pre-test Volume:	Volume Gain:	Post-test pH:	

O2% 20.6 CO2% 0.0 Record impinger change-out and other important information below:

Table B-2. SVOC-END-1.

FIELD DATA CALCULATIONS

Project: 01-1062-01-0866			
Run Date: 6/18/2001 Run Identification: 0010-END-1			
Run Identification: PARAMETER	SYMBOL		
Absolute Pressure in the Duct	Pabs	in. Hg	23.889
Average Duct Gas Temperature	Ts	R	591
Average Meter Temperature	Tm	R	547
Average Gas Oxygen Content	Co2,m	%	20.6
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	26.4
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	107.847
Sample Volume (SI)	VmStdm	dscm	3.054
Average Sampling Rate	Qm	dscf/m	0.599
Volume of Water Vapor	VwStd	scf	1.245
Volume of Water Vapor (SI)	VwStdm	scm	0.0352
Moisture Fraction	Bws	-	0.011
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.70
Gas Velocity at Nozzle	vn	ft/s	24.9
Gas Velocity at Nozzle (SI)	vnm	m/s	7.60
Average Gas Velocity	vncor	ft/s	21.05
Dry Offgas Flow Rate	Qsd	dscf/h	41,960
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,188.2
Actual Offgas Flow Rate	Q	acf/h	59,517
Intermediate Isokinetic Rate	li	%	105.8
Final Isokinetic Rate	I	%	105.6

Table B-2. SVOC-END-1.

Project: 01-1062-010866
Run Date: 6/18/2001
Run Identification: 0010-END-1
Run Type:
Lab Report Date: 8/28/2001
Lab Report Status: (preliminary or final)
Final

RESULTS

• without blank corrections
• final presentation should be rounded to two significant digits

final)		<u> </u>									
			CO	NCENTRATIO			_	N	IAS	S FLOW RATE	S	
		Actual	ĺ	Standard		ry Standard (µg/dscm)		μg/min	l	grams/sec		lb/h
		g/acm)	<	(μg/scm) 3.2e0		(μg/uscin) 3.2e0	_	рулпп 6.4e1		1.1e-6	<	8.4e-
Acenaphthene	< <	2.3e0 2.2e0		3.2e0 3.1e0		3.2e0 3.1e0		6.2e1	<	1.0e-6		8.1e-
Acenaphthylene Acetophenone	<,J	8.3e0		1.2e1		1.2e1		2.3e2		3.9e-6		3.1e-
Aniline	<	2.5e1		3.6e1	2,3	3.6e1	<,5	7.1e2		1.2e-5		9.4e-
Anthracene	<	2.2e0		3.1e0	<	3.1e0	<	6.2e1		1.0e-6		8.1e-
Benzidine	<	1.5e2		2.2e2	<	2.2e2	<	4.3e3		7.2e-5		5.7e-
Benzoic acid	<.E	6.0e2			<.E	8.5e2	<.E			2.8e-4	<,E	2.2e-
Benzo(a)anthracene	<	2.8e0	<'-	3.9e0	<	3.9e0	<	7.8e1	<	1.3e-6	<	1.0e-
Benzo(a)pyrene	<	3.0e1	<	4.2e1	<	4.3e1	<	8.4e2	<	1.4e-5	<	1.1e-
Benzo(b)fluoranthene	<	6.9e1	<	9.7e1	<	9.8e1	<	1.9e3	<	3.2e-5		2.6e-
Benzo(g,h,i)perylene	<	3.9e1	<	5.5e1	<	5.6e1	<	1.1e3		1.8e-5	<	1.5e-
Benzo(k)fluoranthene	<	9.9e1	<	1.4e2	<	1.4e2	<	2.8e3	<	4.6e-5	<	3.7e-
Benzyl alcohol	<	1.3e2	<	1.8e2	<	1.9e2	<	3.7e3	<	6.2e-5	<	4.9e-
bis(2-Chloroethoxy)methane	<	2.3e0		3.2e0	<	3.3e0	<	6.5e1	<	1.1e-6	<	8.6e-
bis(2-Chloroethyl)ether	<	2.5e0		3.6e0	<	3.6e0	<	7.1e1		1.2e-6		9.4e-
bis(2-Ethylhexyl)phthalate	<	5.1e1	<	7.1e1	<	7.2e1	<u> </u>	1.4e3		2.4e-5	<	1.9e-
4-Bromophenyl-phenylether	<	2.2e0	<	3.0e0	<	3.1e0	<	6.1e1	<	1.0e-6	<	8.1e-
Butylbenzylphthalate	<	3.0e0	<	4.2e0	<	4.3e0	<	8.4e1	<	1.4e-6		1.1e-
Carbazole	<	3.0e0		4.2e0	<	4.3e0	<	8.4e1	< <	1.4e-6	<	1.1e-
4-Chloro-3-methylphenol	<	3.9e0		5.5e0	<u></u>	5.6e0	<	1.1e2		1.8e-6 9.7e-6		1.5e-
4-Chloroaniline	<	2.1e1	<	2.9e1	<	2.9e1 3.0e0	\ 	5.8e2 6.0e1		9.7e-6 1.0e-6		8.0e-
2-Chloronaphthalene	<	2.1e0	< <	3.0e0 3.6e0	ζ	3.0e0 3.6e0	<	7.1e1		1.0e-6		9.4e-
2-Chlorophenol	< <	2.5e0 2.5e0	<	3.6e0	>	3.6e0	2	7.1e1	<	1.2e-6		9.46-
4-Chlorophenyl phenyl ether	<	2.8e0		3.9e0	<	3.9e0	~	7.1e1	<	1.3e-6	<	1.0e-
Chrysene	<,J	2.3e1		3.2e1	<,J	3.3e1	<.J	6.5e2	1	1.1e-5		8.6e-
Di-n-butylphthalate	<,J	3.7e1		5.2e1		5.2e1	<,J	1.0e3		1.7e-5		1.4e-
Di-n-octylphthalate Dibenz(a,h)anthracene	<,5	3.9e1	<	5.5e1	2,5	5.6e1	<	1.1e3		1.8e-5	ζ,"	1.5e-
Dibenzofuran	<	2.5e0	<	3.6e0	<	3.6e0	<	7.1e1	<	1.2e-6	<	9.4e-
1,2-Dichlorobenzene	<	2.5e0		3.6e0	<	3.6e0	<	7.1e1	<	1.2e-6	<	9.4e-
1,3-Dichlorobenzene	<	2.8e0		3.9e0	<	3.9e0	<	7.8e1	<	1.3e-6	<	1.0e-
1,4-Dichlorobenzene	IJ	4.4e0		6.2e0	J	6.2e0	J	1.2e2	J	2.1e-6	J	1.6e-
3,3'-Dichlorobenzidine	<	2.5e1	<	3.6e1	<	3.6e1	<	7.1e2	<	1.2e-5	<	9.4e-
2,4-Dichlorophenol	<	3.0e0	<	4.2e0	<	4.3e0	<	8.4e1	<	1.4e-6		1.1e-
Diethylphthalate	<	3.5e0	<	4.9e0	<	4.9e0	<	9.7e1	<	1.6e-6		1.3e-
Dimethyl phthalate	<	2.2e0	<	3.1e0	<	3.1e0	<	6.2e1	<	1.0e-6		8.2e-
2,4-Dimethylphenol	<	1.4e1	<	1.9e1	<	1.9e1	<	3.8e2		6.4e-6	<	5.1e-
4,6-Dinitro-2-methylphenol	<	3.0e1		4.2e1	<	4.3e1	<	8.4e2		1.4e-5		1.1e-
2,4-Dinitrophenol	<	6.2e1		8.7e1	<	8.8e1	<	1.8e3		2.9e-5		2.3e-
2,4-Dinitrotoluene	<	3.0e0		4.2e0	<	4.3e0	<	8.4e1		1.4e-6		1.1e-
2,6-Dinitrotoluene	<	2.8e0		3.9e0	<	3.9e0	<	7.8e1	1	1.3e-6	1	1.0e-
1,2-Diphenylhydrazine	<	2.3e0		3.2e0	<	3.2e0 3.3e0	< <	6.4e1 6.5e1		1.1e-6 1.1e-6		8.4e- 8.6e-
Fluoranthene	<	2.3e0		3.2e0	<	3.3e0 3.3e0	<	6.5e1	<	1.1e-6	<	8.6e-
Fluorene	< <	2.3e0	< -	3.2e0 5.2e1	<	5.2e1	~	1.0e3		1.7e-5		1.4e-
Hexachlorocyclopentadiene	<	3.7e1 2.5e0	!	3.6e0	<	3.6e0	<	7.1e1		1.2e-6		9.4e-
Hexachlorobenzene	2	2.5e0 3.5e0	<	4.9e0	<	4.9e0		9.7e1	<	1.6e-6		1.3e-
Hexachlorobutadiene Hexachloroethane	<	3.7e0	<	5.2e0	<	5.2e0	<	1.0e2	1	1.7e-6		1.4e-
Indeno(1,2,3-cd)pyrene	<	3.5e1	<	4.9e1	<	4.9e1	<	9.7e2		1.6e-5	<	1.3e-
sophorone	<	2.3e0	,	3.2e0	<	3.3e0	<	6.5e1	<	1.1e-6	<	8.6e-
2-Methylnaphthalene	<	2.3e0		3.2e0		3.3e0	<	6.5e1	<	1.1e-6		8.6e-
2-Methylphenol	<	1.1e1	<	1.5e1	<	1.5e1	<	3.0e2	<	5.1e-6	<	4.0e-
3-Methylphenol & 4-Methylphenol	<	7.8e0		1.1e1	<	1.1e1	<	2.2e2	<	3.7e-6	<	2.9e-
N-Nitroso-di-n-propylamine	<	2.5e0	<	3.6e0	<	3.6e0	<	7.1e1	<	1.2e-6		9.4e-
N-Nitrosodimethylamine	<	2.5e0	<	3.6e0	<	3.6e0	<	7.1e1	<	1.2e-6	<	9.4e-
N-Nitrosodiphenylamine	<	3.5e0		4.9e0	<	4.9e0	<	9.7e1	<	1.6e-6	<	1.3e
Naphthalene	<	2.5e0	<	3.6e0	<	3.6e0	<	7.1e1	<	1.2e-6	<	9.4e
2-Nitroaniline	<	2.5e0		3.6e0	<	3.6e0	<	7.1e1	<	1.2e-6		9.4e
3-Nitroaniline	<	9.5e0	<	1.3e1	<	1.3e1	<	2.7e2		4.4e-6		3.5e
4-Nitroaniline	<	8.3e0	<	1.2e1	<	1.2e1	<	2.3e2		3.9e-6		3.1e-
Nitrobenzene	<,J	3.5e0		4.9e0	< ,J	4.9e0	<,J	9.7e1		1.6e-6		1.3e-
2-Nitrophenol	<,J	9.5e0			<.J	1 3e1		2.7e2		4.4e-6		3.5e-
4-Nitrophenol	<	1.3e1		1.8e1		1.8e1				5.9e-6		4.7e-
2,2'-Oxybis(1-chloropropane)	<	3.2e0	<	4.5e0	<	4.6e0	! <	9.1e1	 <.	1.5e-6	<u> </u>	1.2e-

Table B-2. SVOC-END-1.

Project: 01-1062-010866
Run Date: 6/18/2001
Run Identification. 0010-END-1
Run Type:
Lab Report Date: 8/28/2001
Lab Report Status: (preliminary or final)
Final

RESULTS
• without blank corrections
• final presentation should be rounded to two significant digits

final			CONCENTRATIONS MASS FLOW RATES									
							,	Λ	ASS FL	OW RATE	S	
	Ad	tual	St	andard		Standard	l				l	
	(μg/	acm)	(μ	g/scm)	(µg	/dscm)	μg	/min	gran	ns/sec		lb/h
Pentachlorobenzene	<	2.3e0		3.2e0		3.3e0		6.5e1		1.1e-6		8.6e-6
Pentachloronitrobenzene	<	2.5e0		3.6e0		3.6e0		7.1e1		1.2e-6		9.4e-6
Pentachlorophenol	<	6.9e1		9.7e1		9.8e1		1.9e3		3.2e-5		2.6e-4
Phenanthrene	<	2.3e0		3.2e0		3.2e0		6.4e1		1.1e-6		8.4e-6
Phenol	<,J	8.5e0		1.2e1		1.2e1		2.4e2		4.0e-6		3.2e-5
Pyrene	<	2.3e0		3.2e0		3.3e0		6.5e1		1.1e-6		8.6e-6
Pyridine	<	3.9e0		5.5e0		5.6e0		1.1e2		1.8e-6		1.5e-5
1,2,4,5-Tetrachlorobenzene	<	2.5e0		3.6e0		3.6e0		7.1e1		1.2e-6		9.4e-6
1,2,4-Trichlorobenzene	<	2.8e0		3.9e0		3.9e0		7.8e1		1.3e-6		1.0e-5
2,4,5-Trichlorophenol	<	5.8e0		8.1e0		8.2e0		1.6e2		2.7e-6		2.1e-5
2,4,6-Trichlorophenol	<	3.7e0	<	5.2e0	<	5.2e0	<	1.0e2	<	1.7e-6	<	1.4e-5
TICs												
Furan, 2,5-dimethyl-	N,J,M		N,J,M		N,J,M		N,J,M		N,J,M	8.4e-7		6.7e-6
3-Hexanone	M,J,M		N,J,M		M, L, M		N,J,M		N,J,M	1.0e-5		8.2e-5
2-Hexanone	N,J,M		N,J,M		N,J,M		N,J,M		N,J,M	1.3e-5		1.0e-4
Heptane, 2,3-dimethyl-	N,J,M		N,J,M		N,J,M		N.J,M		N,J,M	1.1e-6		8.5e-6
Benzaldehyde	N,J,M	1.7e2	N,J,M		M,J,M		N,J,M		N,J,M	8.0e-5		6.3e-4
Formic acid, phenylmethyl ester	N,J,M	1.7e1	N,J,M		N,J,M		N,J,M		N,J,M	7.8e-6		6.2e-5
Benzaldehyde, 4-ethyl-	N,J,M		N,J,M		N,J,M		N,J,M		N,J,M	6.2e-6		4.9e-5
Dodecane	N,i,M		N,J,M		N,J,M		N,J,M		N,J,M	5.2e-6		4.1e-5
Tridecane	N,J,M		N,J,M		M, L, N		N,J,M		N,J,M	2.3e-6		1.8e-5
2,4-Hexadiene	N,J,M		M,J,M		N,J,M		N,J,M		N,J,M	1.7e-5		1.4e-4
Tetradecane	M,J,M		N,J,M		N,J,M		N,J,M		N,J,M	1.0e-5		8.2e-5
Phosphoric acid tributyl ester	N,J,M		N,J,M		N,J,M		N,J,M		N,J,M	1.7e-6		1.4e-5
Cyclododecane	N,J,M		N,J,M		N,J,M		N,J,M		N,J,M	3.2e-6		2.6e-5
Heptadecane	N,J,M	9.2e-1			N,J,M		N,J,M		N,J,M	4.3e-7		3.4e-6
Octadecanoic acid	N,J,M	4.6e-1	N,J,M	6.5e-1	M, L, M	6.5e-1	N,J,M	1.3e1	N,J,M	2.2e-7	N,J,M	1.7e-6
Heptane, 2,5-dimethyl-												
Benzoic acid, methyl ester												
Benzaldehyde, ethyl-							ļ					
Pentadecane												
Eicosane												
Heneicosane							1					
Octodecane							1					
Phosphine oxide, triphenyl-												
Nonacosane												
Hexatriacontane	[1					
Tetracosane							1					
Tetratriacontane			l				L				L	

Table B-3. SVOC-STRT-2.

SVOC SAMPLING DATA SHEET FOR HLLWE TESTS

										2	, !				
Site:	ì	HLLWE Offgas Tie-in Sampling Location:	Sampling	Location:	MAN	MAN-OFG-73 Nozzle No.	Nozzle No.				2-01	2-01 Est. DP:	0.16 E	Est. Tstack, °F:	133
Project:		01-1062-01-0866 Duct ID, inches:	Duct ID, ir	iches:		12	Nozzle Size,	e, in.:			0.3140 Est.	Est. K:	6.53 E	Est. vs, ft/s:	26.8
Date:		6/19/2001	Static Pre	6/19/2001 Static Pressure, in. WG:		-17.5	Pitot No.:				JM-2	JM-2 Est. DH:	1.04	Operator(s):	FE/RW
Run No.:		0010-STRT-2 Est. O2, %:	Est. 02, %	0:		20.5 F	Pitot Coeff.:				0.84	Est. DGM	0.84 Est. DGM Temperature, °F	٦,	
Run Type:		Test	Test Est CO2, %:	:%		0	Meter Box No.	No.			2	Meter Box	2 Meter Box Leak Checks:	s: Pitot:	ot: pass
Pbar., in. Hg:	-jg:	25.092	Est. Moist., %:	., %.		1.3% ∆H≘	ΔH≡:				1.5673 Pretest	Pretest	0.003 cfm @		15 in. Hg
Tambient, °F.	°F:	90	Impinger Box No.	30x No.:		4	Y-factor:				1.0328			Pitot:	ot: pass
DGM vol. Goal (m³):	Goal (m³):	3.00	DGM vol. Goal (ft³)	Goal (ft³):		127.080	Min. ending DGM vol. (ft ³):	g DGM vol.	(ft³):		615.228 Post-test	Post-test	0.000 cfm	fm @	6 in. Hg
Sampling	Clock	Velocity	Meter	Meter			TEM	TEMPERATURE (°F)	(°F)			Pump			
Time	Time	ΔP	PΛ	Volume	Heated		Meter	ter		Impinger	Aux.	Vacuum	1%	COMMENTS	VTS
(min.)	(24hr)	(in. WG)	(in. WG)	(cubic feet)	Line	Stack	٥	Ont	Filter	Exit	(XAD)	(in. Hg)			
0	8:00	0.16	1.30	488.148	267	132	62	53	262	46	48	0.9	,		
10	8:10	0.16	1.30	494.990	270	133	69	53	263	43	46	6.0	100		
20	8:20	0.16	1.30	501.989	273	133	73	59	267	44	47	6.0	101		
30	8:30	0.16	1.30	508.995	273	132	75	61	262	44	47	6.0	101		
40	8:40	0.16	1.30	515.900	271	132	77	63	269	45	47	0.9	66		
20	8:50	0.16	1.30	523.020	271	132	79	65	263	45	47	0.9	102		
09	00:6	0.16	1.30	530.080	270	132	80	99	264	46	48	0.9	101		
70	9:10	0.16	1.30	537.101	27.1	132	81	89	264	46	48	0.9	100		
80	9:20	0.16	1.30	544.260	270	132	82	69	262	47	48	0.9	102		
06	9:30	0.16	1.30	551.510	271	132	83	70	262	47	48	0.9	103		
100	9:40	0.16	1.30	558.270	272	132	84	7.1	262	48	50	0.9	96		
110	9:50	0.16	1.30	565.420	271	132	85	72	263	48	50	0.9	101		
120	10:00	0.16	1.30	572.570	27.1	132	85	72	263	48	51	0.9	101		
130	10:10	0.16	1.30	579.710	269	132	98	73	263	49	53	0.9	101		
140	10:20	0.16	1.30	586.860	270	132	87	74	263	49	53	0.9	100	ļ	
150	10:30	0.16	1.30	593.900	27.1	132	87	74	264	50	56	6.0	66		
160	10:40	0.16	1.30	601.150	269	132	88	75	264	20	57	0.9	102		
170	10:50	0.16	1.30	608.300	271	132	88	92	262	50	59	0.9	100		
180	11:00		1.30	615.462	270	132	89	76	262	51	61	6.0	100		
Total	Total	∆Pavg	Average	Total			Average	Average Temperatures (°F	rres (°F)			Мах.	Ave. %I		
180	3:00	0.160	1.30	127.314	271	132	81	68	263	47	51	0.9	100		

Table B-3. SVOC-STRT-2.

0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Record impinger change-out and other important information below:

0.0

CO2%

Table B-3. SVOC-STRT-2.

FIELD DATA CALCULATIONS

Project:	01-1062		
Run Date: Run Identification:		2001 STRT-2	
PARAMETER	SYMBOL		# 51 % 145
Absolute Pressure in the Duct	Pabs	in. Hg	23.805
Average Duct Gas Temperature	Ts	R	592
Average Meter Temperature	Tm	R	534
Average Gas Oxygen Content	Co2,m	%	20.6
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	23.5
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	109.351
Sample Volume (SI)	VmStdm	dscm	3.096
Average Sampling Rate	Qm	dscf/m	0.608
Volume of Water Vapor	VwStd	scf	1.108
Volume of Water Vapor (SI)	VwStdm	scm	0.0314
Moisture Fraction	Bws	-	0.010
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.72
Gas Velocity at Nozzle	vn .	ft/s	26.7
Gas Velocity at Nozzle (SI)	vnm	m/s	8.15
Average Gas Velocity	vncor	ft/s	22.56
Dry Offgas Flow Rate	Qsd	dscf/h	44,791
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,268.3
Actual Offgas Flow Rate	Q	acf/h	63,775
Intermediate Isokinetic Rate	li	%	100.6
Final Isokinetic Rate	1	%	100.3

Table B-3. SVOC-STRT-2.

Project: 01-1062-01-0866 Run Date: 6/19/2001

Run Identification: 0010-STRT-2

Run Type: Lab Report Date: 8/28/2001

Lab Report Status: (preliminary or final

RESULTS

without blank corrections
 final presentation should be rounded to two significant digits

	Actual			CENTRATION			,	N	MAS.	S FLOW RATI	ĘS	
	İ	Actual		Standard		Dry Standard			İ			0. 0.
	<u> </u>	(µg/acm)	Ц.	(µg/scm)	L	(µg/dscm)	Ц.	μg/min	<u> </u>	grams/sec		lb/h
Acenaphthene	<,J	3.6e0		5.1e0			<,J	1.1e2	<,J			1.4e-
Acenaphthylene	<,J	3.6e0		5.1e0				1.1e2		1.8e-6		1.4e-
Acetophenone	<,J	9.5e0	<,J	1.3e1			<,J	2.9e2	<,J	4.8e-6		3.8e-
Aniline	<	3.4e1	<	4.8e1	<	4.8e1	<	1.0e3		1.7e-5		1.4e-
Anthracene	<,J	3.6e0		5.1e0				1.1e2				1.4e-
Benzidine	<	1.8e2		2.6e2		2.6e2	<	5.5e3	<	9.1e-5		7.2e-
Benzoic acid	E	5.2e2				7.4e2		1.6e4		2.6e-4		2.1e-
Benzo(a)anthracene	<,J	4.3e0	<,J	6.1e0				1.3e2	<,J	2.2e-6		1.7e-
Benzo(a)pyrene	٧,٧	3.2e1	ار,>	4.5e1	<,۰		<,J	9.6e2	<,J	1.6e-5		1.3e-
Benzo(b)fluoranthene	<,J	6.8e1	<,J	9.6e1	<,,	J 9.7e1	<,J	2.0e3	<,J	3.4e-5		2.7e-
Benzo(g,h,i)perylene	<,J	4.1e1	<,J	5.8e1	\ < ,.	J 5.8e1	<,J	1.2e3	<,J	2.0e-5	<,J	1.6e-
Benzo(k)fluoranthene	<,J	9.8e1	<,J	1.4e2	<,.	J 1.4e2	<,J	2.9e3	<,J	4.9e-5	<,J	3.9e-
Benzyl alcohol	<	1.3e2	<	1.8e2	<	1.8e2	<	3.9e3	<	6.5e-5	<	5.1e-
ois(2-Chloroethoxy)methane	<	3.2e0	<	4.5e0	<	4.5e0	<	9.6e1	<	1.6e-6	<	1.3e-
ois(2-Chloroethyl)ether	<,J	3.6e0	ر,>	5.1e0	<,.	J 5.2e0	<,J	1.1e2	<,J	1.8e-6	<,J	1.4e-
ois(2-Ethylhexyl)phthalate	<,J	2.9e1	<,J	4.2e1	<,.	J 4.2e1	ل,>	8.9e2	ر,>	1.5e-5	<,j	1.2e-
4-Bromophenyl-phenylether	<,J	4.1e0	<,J	5.8e0			<,J	1.2e2	<,J	2.0e-6		1.6e-
Butylbenzylphthalate	<,J	4.3e0	<,J	6.1e0			ر, ز,>	1.3e2		2.2e-6		1.7e-
Carbazole	<,J	4.1e0	<,J	5.8e0			<,J	1.2e2	<,J	2.0e-6		1.6e-
4-Chloro-3-methylphenol	<,J	7.0e0	<,J	9.9e0			ر. د,ک	2.1e2	<,J	3.5e-6		2.8e-
4-Chloroaniline	<	2.5e1	<	3.5e1	<	3.6e1	<	7.5e2	<	1.3e-5		9.9e-
2-Chloronaphthalene	<,J	3.4e0	<,J	4.8e0			- <,J	1.0e2		1.7e-6		1.4e-
2-Chlorophenol	<,J	3.4e0	<,J	4.8e0	<,,		<,J	1.0e2	>,J <,J	1.7e-6		1.4e-
•										1.7e-6 1.9e-6		1. 4e-
4-Chlorophenyl phenyl ether	<,J	3.9e0	<,J	5.4e0	<,.		<,J	1.2e2	<,J			1.9e-
Chrysene	<,J	4.8e0	<,J	6.7e0	<,.		<,J	1.4e2		2.4e-6		
Di-n-butylphthalate	<,J	2.5e1	<,j	3.5e1	<,.		<,J	7.5e2	<,J	1.3e-5		9.9e-
Di-n-octylphthalate	<,J	3.6e1	<,J	5.1e1	<,.		<,J	1.1e3	 <,J	1.8e-5		1.4e-
Dibenz(a,h)anthracene	<,J	3.9e1	ر,>	5.4e1	<,,		<,J	1.2e3	<,J	1.9e-5	-	1.5e-
Dibenzofuran	<,J	3.9e0	<,J	5.4e0	<,,		ر,>	1.2e2	<,J	1.9e-6		1.5e-
1,2-Dichlorobenzene	<,J	3.6e0	<,J	5.1e0	<,,		<,J	1.1e2	<,J	1.8e-6		1.4e-
1,3-Dichlorobenzene	<,J	3.9e0	<,J	5.4e0	<,		۷,>	1.2e2	 <, J	1.9e-6		1.5e-
1,4-Dichlorobenzene	J	4.5e0	J	6.4e0	J	6.5e0	J	1.4e2	J	2.3e-6		1.8e-
3,3'-Dichlorobenzidine	<	2.9e1	<	4.2e1	<	4.2e1	<	8.9e2	<	1.5e-5	<	1.2e-
2,4-Dichlorophenol	<	4.1e0	<	5.8e0	<	5.8e0	<	1.2e2	<	2.0e-6	<	1.6e-
Diethylphthalate	٤,>	5.0e0	<,J	7.0e0	<,J	J 7.1e0	<,J	1.5e2	<,J	2.5e-6	<,J	2.0e-
Dimethyl phthalate	<,J	3.6e0	<,J	5.1e0	ا<,J	J 5.2e0	<,J	1.1e2	<,J	1.8e-6	<,J	1.4e-
2.4-Dimethylphenol	<	1.4e1	<	2.0e1	<	2.0e1	<	4.2e2	<	7.1e-6	<	5.6e-
1,6-Dinitro-2-methylphenol	<	3.2e1	<	4.5e1	<	4.5e1	<	9.6e2	<	1.6e-5		1.3e-
2.4-Dinitrophenol	<	6.4e1	<	9.0e1	<	9.0e1	<	1.9e3	<	3.2e-5		2.5e-
2,4-Dinitrotoluene	<,J	4.3e0	<,J	6.1e0	<,J		<,J	1.3e2	<,j	2.2e-6		1.7e-
2,6-Dinitrotoluene	<,J	3.6e0	<,J	5.1e0	,, <,J		<,J	1.1e2	<,J	1.8e-6		1.4e-
1,2-Dinhololderie	<,J	3.6e0	<,J	5.1e0	-,, <,J		۰,5 ۲,J	1.1e2	<,J	1.8e-6		1.4e-
Fluoranthene	<,J	3.9e0	<,J	5.4e0			۰,۰ <,J	1.2e2	<,J	1.9e-6		1.5e-
Fluorene	J	3.6e0	<,J	5.4e0			ر,۔ ز,>	1.1e2	~,J	1.8e-6		1.4e-
	< < , i		<u> </u>	5.8e1	\ 	5.2e0 5.8e1	> ,J	1.1e2	/,J	2.0e-5	<,0	1.4e-
dexachlorocyclopentadiene		4.1e1	l .									
Hexachlorobenzene	<,J	3.6e0	<,J	5.1e0	<,J		<,J	1.1e2	<,J	1.8e-6		1.4e-
Hexachlorobutadiene	<,J	4.5e0	 <,J	6.4e0	<,J		<,J	1.4e2	<,J	2.3e-6		1.8e-
lexachloroethane	<,J	4.5e0	<,J	6.4e0	<,J		<,J	1.4e2	<,J	2.3e-6	<,J	1,8e-
ndeno(1,2,3-cd)pyrene	<,J	3.4e1	<,J	4.8e1	<,J		<,J	1.0e3	<,J	1.7e-5	<,J	1.4e-
sophorone	<,J	3.6e0	<,J	5.1e0	<,J		<,J	1.1e2	<,J	1.8e-6	<,J	1.4e-
2-Methylnaphthalene	<,J	3.4e0	<,J	4.8e0	<,J		<,J	1.0e2	<,J	1.7e-6		1.4e-
2-Methylphenol	<	1.2e1	<	1.6e1	<	1.6e1	<	3.5e2	<	5.8e-6	<	4.6e-
3-Methylphenol & 4-Methylphenol	<	8.8e0	<	1.2e1	<	1.3e1	<	2.7e2	<	4.4e-6	<	3.5e-
N-Nitroso-di-n-propylamine	<	3.4e0	<	4.8e0	<	4.8e0	<	1.0e2	<	1.7e-6	<	1.4e-
N-Nitrosodimethylamine	<,J	3.4e0	<,J	4.8e0	<,J	1 4.8e0	<,J	1.0e2	<,J	1.7e-6	ر,>	1.4e-
N-Nitrosodiphenylamine	<,J	4.8e0	<,J	6.7e0	<,J	6.8e0	<,J	1.4e2	<,J	2.4e-6	< J	1.9e-
Naphthalene	<,J	3.9e0	<,J	5.4e0	<,J		<,J	1.2e2	<,J	1.9e-6	<,J	1.5e-
2-Nitroaniline	<	3.9e0	<	5.4e0	<	5.5e0	<	1.2e2	<	1.9e-6	<	1.5e-
3-Nitroaniline	<	1.1e1	′ ′	1.6e1	<i>'</i> <		<		<	5.7e-6	<	4.5e-
I-Nitroaniline	<		<	1.4e1	`	1.4e1	•		<	5.7e-6 5.0e-6	<	4.0e-

Table B-3. SVOC-STRT-2.

Project: 01-1062-01-0866
Run Date: 6/19/2001
Run Identification: 0010-STRT-2

Run Hoendincation:
Run Type:
Lab Report Date:
Lab Report Status: (preliminary or final) Test 8/28/2001

Final

RESULTS

without blank corrections
 final presentation should be rounded to two significant digits

final) [MASS FLOW RATES					
		(TRATION				N	ASS FL	OW RATI	S		
	Act	ual	Sta	ndard		tandard	l						
	(µg/a	acm)	(բց	/scm)	(μg/	dscm)	μg	/min	gran	ns/sec		b/h	
Nitrobenzene	<,J	4.5e0	<,J	6.4e0	<,J	6.5e0		1.4e2	<,J	2.3e-6	<,J	1.8e-5	
2-Nitrophenol	<,J	8.4e0	<,J	1.2e1	<,J	1.2e1	<,J	2.5e2		4.2e-6	<,J	3.3e-5	
4-Nitrophenol	<	1.4e1	<	2.0e1	<	2.0e1	<	4.3e2	<	7.2e-6		5.7e-5	
2,2'-Oxybis(1-chloropropane)	<,J	5.0e0	<,J	7.0e0	< ,J	7.1e0		1.5e2	< J	2.5e-6		2.0e-5	
Pentachlorobenzene	<	3.4e0	<	4.8e0	<	4.8e0	<	1.0e2	<	1.7e-6	<	1.4e-5	
Pentachloronitrobenzene	<	3.6e0	<	5.1e0		5.2e0	l	1.1e2		1.8e-6		1.4e-5	
Pentachlorophenol	<	7.0e1		9.9e1		1.0e2		2.1e3		3.5e-5		2.8e-4	
Phenanthrene	<,J	3.9e0		5.4e0		5.5e0		1.2e2		1.9e-6		1.5e-5	
Phenol	<,J	7.5e0		1.1e1		1.1e1	ار,>	2.3e2		3.8e-6		3.0e-5	
Pyrene	<,J	4.1e0	<,J	5.8e0		5.8e0		1.2e2		2.0e-6		1.6e-5	
Pyridine	<	6.4e0	<	9.0e0	<	9.0e0		1.9e2		3.2e-6		2.5e-5	
1,2,4,5-Tetrachlorobenzene	<	3.6e0	<	5.1e0		5.2e0		1.1e2		1.8e-6		1.4e-5	
1,2,4-Trichlorobenzene	<,J	3.9e0	<,J	5.4e0	<,J	5.5e0	<,J	1.2e2		1.9e-6	<,J	1.5e-5	
2,4,5-Trichlorophenol	<	6.6e0		9.3e0	<	9.4e0	<	2.0e2		3.3e-6		2.6e-5	
2,4,6-Trichlorophenol	<	4.8e0	<	6.7e0	<	6.8e0	<	1.4e2	<	2.4e-6	<	1.9e-5	
TICs]										
Furan, 2,5-dimethyl-	N,J,M	2.2e0	N,J,M	3.1e0	N,J,M	3.2e0	N,J,M	6.7e1	N,J,M		N,J,M	8.8e-6	
3-Hexanone	N,J,M	2.2e1	N,J,M		N,J,M		N,J,M		N,J,M		N,J,M	8.7e-5	
Heptane, 2,5-dimethyl-	N,J,M	1.6e0	N,J,M	2.3e0	N,J,M	2.3e0	M,J,M	4.8e1	N,J,M		N,J,M	6.4e-6	
Benzaldehyde	N,J,M	1.5e2	N,J,M	2.1e2	N,J,M	2.2e2	N,J,M	4.6e3	N,J,M	7.6e-5	N,J,M	6.1e-4	
Formic acid, phenylmethyl este	N,J,M	1.2e1	N,J,M	1.7e1	N,J,M	1.7e1	N,J,M		N,J,M		N,J,M	4.7e-5	
Dodecane	N,J,M	1.2e1	N,J,M	1.8e1	N,J,M		N,J,M		N,J,M		N,J,M	5.0e-5	
Tridecane	N,J,M	4.1e0	N,J,M	5.8e0	N,J,M		N,J,M		N,J,M		N,J,M	1.6e-5	
Naphthalene, 1-methyl-	N,J,Q	1.8e0	N,J,Q	2.5e0	N,J,Q		N,J,Q		N,J,Q		N,J,Q	7.0e-6	
Tetradecane	N,J,M	1.3e1	N,J,M		N,J,M		N,J,M		N,J,M		N,J,M	5.1e-5	
Cyclododecane	N,J,M	1.3e0	N,J,M	1.8e0	N,J,M		N,J,M		N,J,M		N,J,M	5.1e-6	
Hexanedioic acid, bis(2-ethylh)	N,J,Q	2.3e0	N,J,Q		N,J,Q		N,J,Q		N,J,Q		N,J,Q	9.0e-6	
1,2-Benzenedicarboxylic acid,	N,J,Q		N,J,Q		N,J,Q		N,J,Q		N,J,Q		N,J,Q	7.6e-6	
Benzo(e)pyrene	N,J,Q	3.2e0	N,J,Q	4.5e0	N,J,Q	4.5e0	N,J,Q	9.6e1	N,J,Q	1.6e-6	N,J,Q	1.3e-5	
Heptane, 2,3-dimethyl-	1								1				
Benzoic acid, methyl ester													
Benzaldehyde, ethyl-					<u> </u>								
Pentadecane	l												
Heptadecane	1		1				ĺ						
Eicosane													
Heneicosane													
Octodecane			i								1		
Phosphine oxide, triphenyl-							1						
Nonacosane							1						
Hexatriacontane													
Tetracosane							!				l		
Tetratriacontane							<u> </u>						

Table B-4. SVOC-END-2.

SVOC SAMPLING DATA SHEET FOR HLLWE TESTS

Site		HI I WE Offices Tie-in Sampling Location:	Samolino	Location:	MAI	N-OFG-73	MAN-OFG-73 Nozzla No				2.01	2-01 Est DD.	0.47	To Joctof to I		133
Project:		01-1062-01-0866 Duct ID, inches:	Duct ID, ii	nches:		12	Nozzle Size, in.	e in :			0.3140	Est. K:	7.68	Est. vs, ft/s:		25.9
Date:		6/19/2001	Static Pre	6/19/2001 Static Pressure, in. WG:		-17.5	Pitot No.:				JM-2 Est.	Est. DH:	1.15	Operator(s):	R	RW,FE
Run No.:		0010-END-2 Est. O2, %:	Est. 02, 9	%:		20.5	Pitot Coeff.:				0.84	0.84 Est. DGM Temperature, °F	Temperatui	re, °F	ω	80
Run Type:		Test	Test Est CO2, %:	%:		0	Meter Box No.	No.			2	2 Meter Box Leak Checks:	Leak Che	cks:	Pitot: Pa	Pass
Pbar., in. Hg:	Hg:	25.099	Est. Moist., %	t., %:		1.3%	1.3% ∆H≅:				1.5673 Pretest	Pretest	0.001 cfm	cfm @	16 in. Hg	후
Tambient, °F:	F.	75	Impinger Box No.:	Box No.:		2	Y-factor:				1.0328				Pitot: ps	pass
DGM vol.	DGM vol. Goal (m³):	3.00	DGM vol.	DGM vol. Goal (ft³):		127.080	Min. ending DGM vol. (ft ³):	J DGM vol.	(ft³):		746.434 Post-test	Post-test	0.001	cfm @	.⊆	₽
Sampling	Clock	Velocity	Meter	Meter			TEM	TEMPERATURE (*F)	(°F)			Pump				
Time (min.)		ΔP (in. WG)	(in. WG)	Volume (cubic feet)	Heated	Stack	Meter	ter	Filter	Impinger	Aux. (XAD)	Vacuum (in Ho)	'1%	SO COM	COMMENTS	
0	14:00	0.14	1.30	619.354	266	132	81	92	275	55	64	12.5	,			
10	14:10	0.14	1.30	626.430	266	132	84	77	276	52	58	12.5	106			
20	14:20	0.14	1.30	633.410	266	132	88	78	259	54	56	12.5	104			
30	14:30	0.14	1.25	640.390	266	132	06	80	260	55	55	12.5	104			
40	14:40	0.14	1.20	647.200	266	132	91	81	259	55	55	12.1	101			
50	14:50	0.14	1.20	654.660	266	132	92	81	260	55	54	12.1	111			
09	15:00	0.14	1.15	661.640	265	132	93	82	260	56	56	11.9	103			
70	15:10	0.14	1.15	668.610	266	132	93	82	260	56	57	11.9	103			
80	15:20	0.14	1.15	675.590	266	132	94	82	260	99	57	11.9	103			
06	15:30	0.14	1.15	682.560	266	132	94	83	259	99	57	11.9	103			
100	15:40	0.14	1.15	689.560	265	132	95	84	259	25	58	11.9	103			
110	15:50	0.14	1.15	696.570	265	132	95	84	259	25	59	11.9	104			
120	16:00	0.14	1.15	703.580	265	132	95	85	259	58	61	11.9	103			
130	16:10	0.14	1.15	710.590	265	132	95	85	259	55	61	11.9	103			
140	16:20	0.14	1.14	717.620	265	132	95	85	258	53	59	11.9	104			
150	16:30	0.14	1.20	724.740	265	132	96	85	259	53	59	11.9	105			
160	16:40	0.14	1.20	731.880	265	132	96	85	258	53	09	11.9	105			
170	16:50	0.14	1.20	738.740	265	132	96	98	259	54	09	11.9	101			
180	17:00	0.14	1.20	745.790	265	132	96	86	259	54	61	11.9	104			
190	17:10	0.14	1.20	752.830	265	132	96	85	259	54	61	11.9	104			
195	17:15	0.14	1.20	756.352	265	132	95	98	258	54	62	11.9	104			
Total	Total	ΔPavg	Average	Total			Average	Average Temperatures (°F	rres (°F)			Max.	Ave. %I,			
195	3:15	0.140	1.19	136.998	265	132	93	83	261	55	59	12.5	104			

Table B-4. SVOC-END-2.

0010 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

							Impipoer M# Gain	inipingel vvi. Galil	24.3	nico IoV recipan	inplinger vol. Gairl	0.0		
				modified	Silica Gel	300-400g	800.7	773.4	27.3					
2	A-3424		Acid Scrub Section	modified	2N NaOH	100 mL	728.6	730.4	-1.8				13.0	000381
•	a No.:			short stem	None	Empty	576.5	573.6	2.9	0.0	0.0	0.0		NaOH Lot #
Impinger Box no.:	XAD trap Quanterra No.:		Imp-2	G-S	Organics free water	100 mL	691.6	6:069	0.7	100.0	100.0	0.0	6.0	QCLAB-1
			lmp-1	modified	Organics	100 mL	681.7	688.2	-6.5	100.0	100.0	0.0	6.0	OF water Lot #
as Tie-in			KO-1	short stem	None	Empty	533.9	531.9	2.0	0.0	0.0	0.0		STL-A4023
HLLWE Offgas Tie-in	6/19/2001	0010-END-2	XAD	trap	XAD-2	20 - 40g, dry	313.3	313.6	-0.3				;	Filter Lot #
Site:	Date:	Run No.:	Component:	Type:	Reagent:	Nominal Contents:	Post-test Wt., g:	Pre-test Wt., g:	Wt. Gain, g:	Post-test Volume:	Pre-test Volume:	Volume Gain:	Post-test pH:	

02% 20.6 CO2% 0.0 Record impinger change-out and other important information below:

Table B-4. SVOC-END-2.

FIELD DATA CALCULATIONS

Project:	01-1062-0		
Run Date: Run Identification:			
PARAMETER	SYMBOL		
Absolute Pressure in the Duct	Pabs	in. Hg	23.812
Average Duct Gas Temperature	Ts	R	592
Average Meter Temperature	Tm	R	547
Average Gas Oxygen Content	Co2,m	%	20.6
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	24.3
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	114.799
Sample Volume (SI)	VmStdm	dscm	3.251
Average Sampling Rate	Qm	dscf/m	0.589
Volume of Water Vapor	VwStd	scf	1.146
Volume of Water Vapor (SI)	VwStdm	scm	0.0324
Moisture Fraction	Bws	_	0.010
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.72
Gas Velocity at Nozzle	vn	ft/s	25.0
Gas Velocity at Nozzle (SI)	vnm	m/s	7.62
Average Gas Velocity	vncor	ft/s	21.09
Dry Offgas Flow Rate	Qsd	dscf/h	41,913
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,186.9
Actual Offgas Flow Rate	Q	acf/h	59,641
Intermediate Isokinetic Rate	li	%	104.2
Final Isokinetic Rate	1	%	103.9

Table B-4. SVOC-END-2.

Project: 01-1062-01-0866

Run Date: Run Identification: Run Type:

6/19/2001 0010-END-2 Test 8/28/2001

RESULTS

 without blank corrections • final presentation should be rounded to two significant digits

Lab Report Date: Lab Report Status: (preliminary or Final

final)	Т	CON	CENTE	RATION	\$			MA	SS FI	OW RAT	ES	
	Actual	CON		dard		tandard						
			(µg/s		•	dscm)	i	g/min	ora	ms/sec		lb/h
	(µg/acm)	1-0				3.0e0		6.0e1	<	9.9e-7	_	7.9e-6
Acenaphthene		1e0		3.0e0	< <	2.9e0	<	5.8e1	<	9.9e-7 9.6e-7	<	7.6e-6
Acenaphthylene		1e0	<	2.9e0		1.1e1		2.3e2		3.8e-6	ı	3.0e-5
Acetophenone	,-	0e0	,	1.1e1	<,J <	3.4e1	J <	6.7e2	' ,J	1.1e-5	<,5	8.9e-5
Aniline		4e1	<	3.4e1 2.9e0	<u> </u>	2.9e0	`	5.8e1	`	9.6e-7	<	7.6e-6
Anthracene	1	1e0 4e2	<	2.9e0 2.0e2	<	2.9e0 2.1e2	<	4.1e3		6.8e-5	<	5.4e-4
Benzidine		8e2		8.2e2		8.3e2	Ē	1.6e4		2.7e-4	ı	2.2e-3
Benzoic acid		6e0	<	3.7e0	<	3.7e0	<	7.3e1	<	1.2e-6	<u> </u>	9.7e-6
Benzo(a)anthracene		8e1	<	4.0e1	~	4.0e1	<	7.9e2		1.3e-5	<	1.0e-4
Benzo(a)pyrene		5e1	<	9.1e1	<	9.2e1	<	1.8e3	<	3.0e-5		2.4e-4
Benzo(b)fluoranthene		7e1		5.2e1	<	5.2e1	<	1.0e3	l .	1.7e-5		1.4e-4
Benzo(g,h,i)perylene	1	3e1	<	1.3e2	<	1.3e2	<	2.6e3	ı	4.4e-5	<	3.5e-4
Benzo(k)fluoranthene		2e2	<	1.7e2	<	1.8e2	<	3.5e3		5.8e-5		4.6e-4
Benzyl alcohol			<	3.0e0	<	3.1e0	<	6.1e1	<	1.0e-6	<	8.0e-6
bis(2-Chloroethoxy)methane	1	2e0 4e0	<	3.4e0	<	3.4e0	<	6.7e1	<	1.1e-6	<	8.9e-6
bis(2-Chloroethyl)ether	1		<,J	4.9e1	` <,J	4.9e1	<,J	9.7e2	ı	1.6e-5		1.3e-4
bis(2-Ethylhexyl)phthalate		5e1 0e0	<,,,	2.9e0	/,J	2.9e0	<	5.7e1	<	9.5e-7	<	7.6e-6
4-Bromophenyl-phenylether	ł .	8e0	<	4.0e0	<	4.0e0	<		<	1.3e-6	<	1.0e-5
Butylbenzylphthalate	1	8e0	<	4.0e0	<	4.0e0	<		<	1.3e-6	<	1.0e-5
Carbazole	1		<	5.2e0	<	5.2e0	~	1.0e2		1.7e-6	1	1.4e-5
4-Chloro-3-methylphenol		7e0	<	2.7e1	<	2.8e1	<	5.5e2		9.1e-6	-	7.2e-5
4-Chloroaniline	1	9e1	<	2.7e1 2.8e0	<	2.9e0	<		<	9.4e-7	<	7.5e-6
2-Chloronaphthalene	1	0e0	<	3.4e0	<	3.4e0	<	6.7e1		1.1e-6	1	8.9e-6
2-Chlorophenol	1 -	4e0			<	3.4e0	<	6.7e1	<	1.1e-6		8.9e-6
4-Chlorophenyl phenyl ether	1	4e0	<	3.4e0	1	and the second	<	7.3e1	1.	1.2e-6		9.7e-6
Chrysene		6e0	<	3.7e0	<	3.7e0 3.1e1	<.J	6.1e2	l	1.0e-5		8.0e-5
Di-n-butylphthalate		2e1	<,J	3.0e1	<,J	4.9e1	1 '	9.7e2	i '	1.6e-5	1 '	1.3e-4
Di-n-octylphthalate	1 '-	5e1	<,J	4.9e1	<,J		<,J <		1 '	1.7e-5		1.4e-4
Dibenz(a,h)anthracene		7e1	<	5.2e1 3.4e0	<	5.2e1 3.4e0	<	1.0e3 6.7e1		1.7e-5		8.9e-6
Dibenzofuran		4e0	< <	3.4e0	<	3.4e0	<	6.7e1		1.1e-6	ı	8.9e-6
1,2-Dichlorobenzene		4e0			<	3.4e0 3.7e0	<	7.3e1	<	1.2e-6		9.7e-6
1,3-Dichlorobenzene		6e0	<	3.7e0		6.5e0	<,J	1.3e1	I	2.1e-6		1.7e-5
1,4-Dichlorobenzene	1	5e0	<,J	6.4e0	<,J <	3.4e1	<,,,	6.7e2		1.1e-5		8.9e-5
3,3 -Dichlorobenzidine		4e1	<	3.4e1 4.0e0	<	4.0e0	<	7.9e1		1.3e-6		1.0e-5
2,4-Dichlorophenol		8e0	< <	4.0e0 4.6e0	<	4.6e0	<	9.1e1	1	1.5e-6	1	1.2e-5
Diethylphthalate		2e0	<	2.9e0	<	3.0e0	<	5.8e1	1	9.7e-7		7.7e-6
Dimethyl phthalate		1e0	<	1.8e1	<	1.8e1	<	3.6e2		6.0e-6		4.7e-5
2,4-Dimethylphenol		3e1	<	4.0e1	<	4.0e1	<	7.9e2		1.3e-5		1.0e-4
4,6-Dinitro-2-methylphenol		8e1	1	4.0e1 8.2e1	<	8.3e1	<	1.6e3		2.7e-5	1	2.2e-4
2,4-Dinitrophenol		8e1	< <		<	4.0e0	<	7.9e1		1.3e-6	1	1.0e-5
2,4-Dinitrotoluene		8e0		4.0e0 3.7e0	<	3.7e0	<	7.3e1		1.2e-6		9.7e-6
2,6-Dinitrotoluene		.6e0	< <		<	3.7e0 3.0e0	<	6.0e1	1	9.9e-7		7.9e-6
1,2-Diphenylhydrazine		1e0	ŀ	3.0e0	<	3.1e0	<	6.1e1	1	1.0e-6		8.0e-6
Fluoranthene		2e0	<	3.0e0 3.0e0	<	3.1e0	<	6.1e1		1.0e-6		8.0e-6
Fluorene		2e0	<	4.9e1	<	4.9e1	<	9.7e2		1.6e-5		1.3e-4
Hexachlorocyclopentadiene	1	5e1	[l		1	6.7e2	1	1.1e-6		8.9e-6
Hexachlorobenzene		4e0	<	3.4e0 4.6e0	<	3.4e0 4.6e0	<	9.1e1	1	1.5e-6		1.2e-5
Hexachlorobutadiene		.2e0	l .		<		<	9.7e1		1.6e-6		1.3e-5
Hexachloroethane		5e0	<	4.9e0	-	4.9e0	<	9.7e1 9.1e2		1.5e-5		1.2e-4
Indeno(1,2,3-cd)pyrene		.2e1	<	4.6e1	<	4.6e1				1.0e-6	1	8.0e-6
Isophorone		2e0	<	3.0e0	<	3.1e0	1	6.1e1	<		1	8.0e-6
2-Methylnaphthalene		.2e0	<	3.0e0	<	3.1e0	<	6.1e1		1.0e-6	1	
2-Methylphenol	< 1.	0e1	 <	1.4e1	<	1.4e1	<	2.9e2	.I.S	4.8e-6	J	3.8e-5

Table B-4. SVOC-END-2.

Project: 01-1062-01-0866

Run Date: Run Identification: Run Type: Lab Report Date: Lab Report Status: (preliminary or final)

6/19/2001 0010-END-2 Test 8/28/2001 Final

RESULTS

without blank corrections
 final presentation should be rounded to two significant digits

final)			L_		_							
	L_			ICENTRATIONS MASS FLOW RAT					FLOW RAT	ES		
		Actual	l	Standard	ı	y Standard				4		
		(µg/acm)		(µg/scm)		µg/dscm)		μg/min		rams/sec		lb/h
3-Methylphenol & 4-Methylphenol	<	7.4e0		1.0e1		1.0e1		2.1e2		3.4e-6		2.7e-5
N-Nitroso-di-n-propylamine	<	2.4e0	,	3.4e0		3.4e0		6.7e1		1.1e-6	<	8.9e-6
N-Nitrosodimethylamine	<	2.4e0	<	3.4e0	4	3.4e0	<	6.7e1	<	1.1e-6	1	8.9e-6
N-Nitrosodiphenylamine	<	3.2e0	<	4.6e0		4.6e0	<	9.1e1	<	1.5e-6	<	1.2e-5
Naphthalene	<	2.4e0	<	3.4e0		3.4e0	<	6.7e1	<	1.1e-6	<	8.9e-6
2-Nitroaniline	<	2.4e0	<	3.4e0	1	3.4e0	<	6.7e1	<	1.1e-6	<	8.9e-6
3-Nitroaniline	<	8.9e0	<	1.2e1	<	1.3e1	<	2.5e2		4.2e-6	<	3.3e-5
4-Nitroaniline	<	7.8e0	<	1.1e1	<	1.1e1	<	2.2e2	<	3.7e-6	<	2.9e-5
Nitrobenzene	<,J	2.6e0	<,J			3.7e0		7.3e1	<,J	1.2e-6		9.7e-6
2-Nitrophenol	<,J	1.1e1	<,J		<,J	1.6e1	<,J	3.1e2	<,J	5.2e-6	<,J	4.1e-5
4-Nitrophenol	<,J	1.2e1	<,J		<,J	1.7e1		3.3e2		5.6e-6	<,J	4.4e-5
2,2'-Oxybis(1-chloropropane)	<	3.0e0	<	4.3e0		4.3e0	<	8.5e1	<	1.4e-6	<	1.1e-5
Pentachlorobenzene	<	2.2e0	<	3.0e0		3.1e0		6.1e1	<	1.0e-6	<	8.0e-6
Pentachloronitrobenzene	<	2.4e0	<	3.4e0		3.4e0		6.7e1	<	1.1e-6	<	8.9e-6
Pentachlorophenol	<	8.0e1	<	1.1e2		1.1e2	i	2.3e3	<	3.8e-5	<	3.0e-4
Phenanthrene	<	2.1e0	<	3.0e0		3.0e0		6.0e1	<	9.9e-7	< .	7.9e-6
Phenol	<,J	8.4e0	<,J		<,J	1.2e1	1 '	2.4e2		4.0e-6	,	3.1e-5
Pyrene	<	2.2e0	<	3.0e0	<	3.1e0	<	6.1e1	<	1.0e-6	<	8.0e-6
Pyridine	<	3.7e0	<	5.2e0		5.2e0	<	1.0e2	<	1.7e-6	<	1.4e-5
1,2,4,5-Tetrachlorobenzene	<	2.4e0	<	3.4e0		3.4e0	<	6.7e1		1.1e-6	<	8.9e-6
1,2,4-Trichlorobenzene	<	2.6e0	<	3.7e0		3.7e0	<	7.3e1	<	1.2e-6	<	9.7e-6
2,4,5-Trichlorophenol	<	5.4e0	<	7.6e0		7.7e0	<	1.5e2	,	2.5e-6	<	2.0e-5
2,4,6-Trichlorophenol	<	3.5e0	<	4.9e0	 	4.9e0	<	9.7e1	<	1.6e-6	<	1.3e-5
TICs	ļ.,				ļ., .		ļ	400		74.0	N.J	5.6e-5
3-Hexanone	N,J,	1.5e1	'		N,J			4.3e2	N,J	7.1e-6		
Benzaldehyde	N,J,	1.6e2						4.4e3	, , ,	7.4e-5	N,J	5.9e-4 2.6e-6
2-Cyclohexene-1-one, 3-methyl-	N,J,	6.9e-1						1.9e1		3.2e-7		7.6e-5
Formic acid, phenylmethyl ester	N,J,	2.1e1						5.8e2		9.6e-6 6.2e-6		4.9e-5
Benzaldehyde, ethyl-	N,J,	1.3e1						3.7e2 2.3e2		3.8e-6	N,J	3.0e-5
Dodecane	N,J,	8.0e0 4.5e0						1.3e2		2.1e-6		1.7e-5
Tridecane	N,J, N.J.	4.5e0 6.1e0						1.7e2		2.1e-6 2.8e-6		2.3e-5
2,4-Hexadiene		2.2e1						6.1e2		1.0e-5		8.0e-5
2,5-Diethylphenol Tetradecane	N,J, N,J,	2.2e1 2.1e1						6.0e2		1.0e-5		8.0e-5
	N,J,	1.2e0						3.5e1		5.8e-7		4.6e-6
Hexatriacontane	N,J,	5.2e0	N.J					1.5e2			N.J	1.9e-5
Phosphoric acid tributyl ester Cyclododecane	N,J,	2.8e0						7.9e1		1.3e-6	N,J	1.0e-5
Pentadecane	N,J,	9.7e-1						2.7e1			N.J	3.6e-6
Heneicosane	N,J,	2.0e0						5.5e1		9.2e-7		7.3e-6
Tetracosane	N,J,	5.6e0						1.6e2			N.J	2.1e-5
Pentacosane	N.J.	8.0e0			N.J			2.3e2		3.8e-6		3.0e-5
Hexacosane	N,J	1.4e1						3.9e2		6.5e-6	'	5.2e-5
Heptacosane	N,J	1.8e1			N,J		N,J	5.1e2		8.4e-6		6.7e-5
Hexatriacontane	N,J	4.3e1	N,J		N,J		N,J	1.2e3			N,J	1.6e-4
Eicosane	N,J,	4.1e0						1.2e2		1.9e-6		1.5e-5
Furan, 2,5-dimethyl-	',',		۱,۳	3,556	"	2.230			"		′້	
Heptane, 2,5-dimethyl-									l			
Heptane, 2,3-dimethyl-									l			
Benzoic acid, methyl ester	 											
Heptadecane									l			
Octodecane												
Phosphine oxide, triphenyl-	ŀ		ĺ						l			
Nonacosane	l									***		
Tetratriacontane					1				İ			

Table B-5.	0031_ST	RT_1							T	
Taule D-3.	0051-81	IX 1 - 1 .	VO	ST SAME	PLING DAT	A SHFF	T	L		
Site:	HIIWEO	offgas Tie-in		OI OMINI	0031-S		Meter Box N	lo.:	1	& 2
	01-1062-		Run Type:		Tes		Y-factor:			4/1.005
Date:		/2001	Pbar., in. Ho	7:	25.2		Operator:			/FE/JA
Date.	0/20	72001	j. 50m, 111. 1 18	7.	۷.۷.۷		12000000			
VOST Tube	Leak	Check	Sampling	Sar	npling	Probe	Condenser	Meter	Meter	Pump
Sample	Rate	@ vacuum	Rate	l	ime	Temp.	Temp.	Temp.	Volume	Vacuum
Numbers	(L/min)	(in. Hg)	(L/min)	(24 hr)	(min.)	(°C)	(°C)	(°C)	(L)	(in. Hg)
Set 1	·	etest	Target:	8:10	0	130	5.0	15	0.000	4.5
A-3359	0.009	5	1L/MIN	8:15	5	130	5.0	17	2.884	4.5
A-3360	0.000	~ <u>.</u>		8:20	10	130	4.0	17	6.083	4.7
A-3361				8:25	15	130	5.0	19	9.194	4.7
		1000		8:30	20	130	5.0	19	12.439	4.7
				8:35	25	130	5.0	21	15.653	4.7
				8:40	30	130	5.0	21	18.725	4.3
				8:45	35	130	6.0	22	21.483	4.3
	Pos	t-test		8:50	40	130	6.0	22	24.230	4.3
İ	0.003	5.5	Total	0:40	40				24.230	Max:
			Average			130	5.1	19		4.7
Set 2	Pre	etest	Target:	9:00	0	130	7.0	22	0.000	7.5
A-3362	0.007	16	1L/MIN	9:05	5	130	6.0	23	3.574	11.0
A-3363				9:10	10	130	6.0	24	8.376	12.5
A-3364				9:15	15	130	6.0	26	13.373	12.5
				9:20	20	130	8.0	25	18.381	12.5
				9:25	25	130	8.0	25	23.393	12.5
		t-test		9:26	26	130	8.0	25	24.020	12.5
	0.007	16	Total	0:26	26			_	24.020	Max:
			Average			130	7.0	24		12.5
Set 3		etest	Target:	9:48	0	130	10.0	27	0.000	9.5
A-3365	0.007	16		9:53	5	130	8.0	28	5.031	9.5
A-3366				9:58	10	130	8.0	28	10.566	10.0
A-3337				10:03	15	130	8.0	28	15.901	9.0
				10:08	20	130	8.0	29	21.074	9.0
		st-test	T-4 !	10:11	23	130	8.0	29	24.202	9.0
	0.004	16	Total	0:23	23	130	8.3	28	24.202	Max: 10.0
		-44	Average	40.00	^			29	0.000	12.7
Set 4		etest	Target:	10:23 10:28	0	130	13.0			12.7 12.7
A-3368	0.005	16	<u> </u>	10:28	5 10	130 130	9.0 7.0	29 30	4.833 9.742	12.7
A-3369				10:33	15	130	7.0	30	14.662	12.7
A-3370				10:36	20	130	7.0	30 -	19.598	12.7
	Doo	t-test		10:43	25	130	7.0	31	24.544	12.8
	0.002	16	Total	0:25	25	100	1.0	<u> </u>	24.544	Max:
	0.002	10	Average	0.23	20	130	8.3	30		12.8
Condensate	1		ı, trolugo	Tenax R	inse:		b Rinse:		[-cococococococococococococococococococo	.2.0
A-3371				NA		NA				
Final Conder	sate Volu	ıme:			inse Vol.:		Rinse Vol.:			
40				NA	mL	NA	mL Tunse voi			
70					IONAL INP				v 16 W	
			I	Symbol	Units	Set 1	Set 2	Set 3	Set 4	Average
Average Dry	Oxygen (Concentration	on	Co2	%	20.5				20.5
Process Gas F				Qsd	dscm/sec	0.330	1	0.330	1 i	0.330
	(2.),	. , 😊			AMPLING					
				Symbol	Units	Set 1	Set 2	Set 3	Set 4	Net
Sample Volu	me @ Sta	ndard Con	ditions	VmStd	dsL	20.508		20.008	 	80.810
VmStd=17.647 *									ļ	
Avg. Actual S			/m/min	Qm	L/min	0.606	0.924	1.052	0.982	0.891
Avg. Samplin				QmStd	dsL/min	0.513		\$4	i	0.741
g. Cumpin	ى	71110								

Table B-5. 0031-STRT-1.					
Tubic D-5. 0051-511X1-1.	CC	NCENTRATIONS			
		per dry standard cub	oic meter		
Project:	0866	Lab Report Date:	08/20/01		
Run Date:	6/20/2001	Lab Report Status:	Final		
Run Identification:	0031-STRT-1) T-1: 1
Analyte				Fla	Run Total g μg/dscm
Acetone				B	у дулазстт 8.9e1
					3.5e1
Acrylonitrile					4.9e0
Benzene Bromobenzene					1.5e0
Bromochloromethane					1.9e0
Bromodichloromethane		MA MI 1327			1.5e0
Bromoform					2.2e0
Bromomethane				<,,J	
2-Butanone				<,,	
					1.9e0
n-Butylbenzene		AN A MARKET STATES			1.1e0
sec-Butylbenzene					1.7e0
tert-Butylbenzene					1.7e0 1.2e1
Carbon disulfide					2.0e0
Carbon tetrachloride					1.2e0
Chlorobenzene Chlorodibromomethano				<	1.2e0 1.9e0
Chlorodibromomethane					
Chloroethane				<,J <,J	
Chloroform					1.5e1
Chloromethane				. J	7.3e-1
2-Chlorotoluene					7.3e-1
4-Chlorotoluene					3.3e0
1,2-Dibromo-3-chloropropane	6- 4- 0- k % Asserted by				2.5e0
1,2-Dibromoethane					2.3e0 2.1e0
Dibromomethane					2.1e0 2.2e0
1,2-Dichlorobenzene		and and are are a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a			1.2e0
1,3-Dichlorobenzene	NATIONAL ACCOUNTS OF THE CONTRACT OF THE CONTR				1.7e0
1,4-Dichlorobenzene					
Dichlorodifluoromethane		yaqay a		<	3.2e0
1,1-Dichloroethane				<	1.9e0
1,2-Dichloroethane				<,,	
1,1-Dichloroethene				<,,	2.0e0 1.9e0
cis-1,2-Dichloroethene					2.1e0
trans-1,2-Dichloroethene					1.6e0
1,2-Dichloropropane					2.1e0
1,3-Dichloropropane					2.0e0
2,2-Dichloropropane					
1,1-Dichloropropene					2.2e0
cis-1,3-Dichloropropene				<	1.6e0
trans-1,3-Dichloropropene				<	1.9e0
Ethylbenzene					1.2e0
Hexachlorobutadiene					2.7e0
2-Hexanone					6.9e0
Isopropylbenzene		THE ALCOHOLOGY TO THE	The same of the Particular Section 1991		8.7e-1
p-IsopropyItoluene				<	1.4e0
Methylene chloride				E,E	
4-Methyl-2-pentanone				<	7.3e0
Naphthalene				<	2.6e0
n-Propylbenzene				<	8.3e-1

Table B-5. 0031-STRT-1.		i					
		NCENTRATIO		motor			
Project	0866	Lab Report Da		08/20/0	1		
Project: Run Date:	6/20/2001	Lab Report St		Final	'		
Run Identification:	0031-STRT-1	Lab Hopon Gr	u.uu.				
Analyte		L				Rur	n Total
						Flag	μg/dscm
Styrene						<	9.7e-1
1,1,1,2-Tetrachloroethane						<	1.2e0
1,1,2,2-Tetrachloroethane						<	2.7e0
Tetrachloroethene						<	1.9e0
Toluene						<,J	2.4e0
1,2,3-Trichlorobenzene						<	2.6e0
1,2,4-Trichlorobenzene							2.7e0
1,1,1-Trichloroethane						<	2.4e0
1,1,2-Trichloroethane						<	2.1e0
Trichloroethene						<	2.0e0
Trichlorofluoromethane						<,J	2.0e0
1,2,3-Trichloropropane				18-818		<	3.0e0
1,2,4-Trimethylbenzene						<	1.2e0
1,3,5-Trimethylbenzene					urana i	<	7.3e-1
Vinyl chloride						<,J	1.6e0
m-Xylene & p-Xylene						<	5.4e0
o-Xylene						<	9.5e-1
TICS							
Hexane, 2-methyl-						N,J,M	2.1e0
Pentane, 2,3-dimethyl-						N,J,M	2.2e0
Butane, 1-chloro-						N,J,M	7.1e-1
Hexane, 3-methyl-						N,J,M	4.7e0
Cyclohexene						N,J,M	1.2e0
1-Heptene						N,J,M	6.7e-1
Cyclohexane, methyl-						N,J,M	1.4e0
Hexane, 2,4-dimethyl-						N,J,M	1.4e0
Cyclopentane, ethyl-						N,J,M	3.5e-1
Octane						N,J,M	3.3e-1
Decane						N,J,M	1.5e0
Undecane					,	N,J,M	1.2e1
Undecane, 5-methyl-						N,J,M	7.9e0
Decane, 2,9-dimethyl-						N,J,M	7.9e-1
Dodecane						N,J,M	3.8e2
Undecane, 2,6-dimethyl-						N,J,M	1.4e0
Cyclohexane, hexyl-						N,J,M	7.3e-1
Tridecane	******					N,J,M	3.5e1
Tetradecane						N,J,M	1.1e1
Pentane, 3,3-dimethyl-					71		
Pentane, 3-ethyl-							
Cyclopentane, 1,2-dimethyl-							and the second s

Table B-11. 0031-STRT-1	MASS FLOW RATE		
	grams per second		
Project:	01-1062-01-086 Lab Report Date: 08/20/01		
Run Date:	6/20/2001 Lab Report Status: Final		
Run Identification:	0031-STRT-1	Run	Total
Analyte		ag	g/sec
Acetone			2.9e-5
		<	1.1e-5
Acrylonitrile Benzene		<	1.6e-6
Bromobenzene			4.9e-7
Bromochloromethane			6.1e-7
Bromodichloromethane			4.9e-7
Bromoform			7.3e-7
Bromomethane			6.9e-7
2-Butanone	1.00 M		3.6e-6
n-Butylbenzene			6.1e-7
sec-Butylbenzene			3.5e-7
tert-Butylbenzene	-		5.7e-7
Carbon disulfide			4.0e-6
Carbon tetrachloride			6.5e-7
Chlorobenzene			3.9e-7
Chlorodibromomethane			6.1e-7
Chloroethane	<		6.5e-7
Chloroform			9.8e-7
Chloromethane			4.9e-6
2-Chlorotoluene			2.4e-7
4-Chlorotoluene	•		2.4e-7
1,2-Dibromo-3-chloropropan	e	<	1.1e-6
1,2-Dibromoethane		<	8.2e-7
Dibromomethane		<	6.9e-7
1,2-Dichlorobenzene		<	7.3e-7
1,3-Dichlorobenzene		<	4.1e-7
1,4-Dichlorobenzene	•	<	5.7e-7
Dichlorodifluoromethane	•	<	1.1e-6
1,1-Dichloroethane	•	<	6.1e-7
1,2-Dichloroethane	<	,J	6.5e-7
1,1-Dichloroethene	<	J,	6.5e-7
cis-1,2-Dichloroethene		<	6.1e-7
trans-1,2-Dichloroethene		<	6.9e-7
1,2-Dichloropropane		<	5.3e-7
1,3-Dichloropropane	•	<	6.9e-7
2,2-Dichloropropane		<	6.5e-7
1,1-Dichloropropene	•	<	7.3e-7
cis-1,3-Dichloropropene		<	5.3e-7
trans-1,3-Dichloropropene		<	6.1e-7
Ethylbenzene	•	<	3.8e-7
Hexachlorobutadiene		<	9.0e-7
2-Hexanone		<	2.3e-6
Isopropylbenzene	•	<	2.9e-7
p-Isopropyltoluene		<	4.5e-7
Methylene chloride	E	,В	7.3e-5
4-Methyl-2-pentanone		<	2.4e-6
Naphthalene		<	8.6e-7
n-Propylbenzene		<	2.7e-7

Table B-11. 0031-STRT-1	.			ļ	
		ASS FLOW RATE	ii		
	g	rams per second			
Project:		Lab Report Date:	08/20/01		
Run Date:	6/20/2001	Lab Report Status:	Final		
Run Identification: Analyte	0031-STRT-1	1		Run	Total
Analyte				Flag	g/sec
Styrene				<	3.2e-7
1,1,1,2-Tetrachloroethane				<	4.0e-7
1,1,2,2-Tetrachloroethane				<	9.0e-7
Tetrachloroethene				<	6.1e-7
Toluene				<,J	7.8e-7
1,2,3-Trichlorobenzene				<	8.6e-7
1,2,4-Trichlorobenzene				<	9.0e-7
1,1,1-Trichloroethane			A A Partie	<	7.8e-7
1,1,2-Trichloroethane				<	6.9e-7
Trichloroethene				<	6.5e-7
Trichlorofluoromethane				<,J	6.5e-7
1,2,3-Trichloropropane				<	9.8e-7
1,2,4-Trimethylbenzene		3.4.10.7.00		<	4.1e-7
1,3,5-Trimethylbenzene				<	2.4e-7
Vinyl chloride				<,J	5.3e-7
m-Xylene & p-Xylene		•		<	1.8e-6
o-Xylene				<	3.1e-7
TICS					
Hexane, 2-methyl-				N,J,M	6.9e-7
Pentane, 2,3-dimethyl-				N,J,M	7.3e-7
Butane, 1-chloro-				N,J,M	2.3e-7
Hexane, 3-methyl-				N,J,M	1.6e-6
Cyclohexene				N,J,M	4.1e-7
1-Heptene				N,J,M	2.2e-7
Cyclohexane, methyl-				N,J,M	4.5e-7
Hexane, 2,4-dimethyl-				N,J,M	4.5e-7
Cyclopentane, ethyl-		ALIE - ALI I 1994 - 171		N,J,M	1.1e-7
Octane				N,J,M	1.1e-7
Decane				N,J,M	4.9e-7
Undecane				N,J,M	4.1e-6
Undecane, 5-methyl-				N,J,M	2.6e-6
Decane, 2,9-dimethyl-				N,J,M	2.6e-7
Dodecane				N,J,M	1.3e-4
Undecane, 2,6-dimethyl-		-		N,J,M	4.5e-7
Cyclohexane, hexyl-				N,J,M	2.4e-7
Tridecane				N,J,M	1.1e-5
Tetradecane				N,J,M	3.8e-6
Pentane, 3,3-dimethyl-					
Pentane, 3-ethyl-					
Cyclopentane, 1,2-dimethyl-					

Project 01-1062-01-0865 Run Type: Test Y-factor: 0.998	Table B-6.	0031-EN	ID-1.			<u> </u>					
Project				VO	ST SAM	PLING DAT	A SHEE				
Date Date	Site:	HLLWE (Offgas Tie-in	Run No.:		0031-E	ND-1	Meter Box N	lo.:		
Date	Project:	01-1062-	01-0866	Run Type:				Y-factor:			
Sample Numbers (L/min) (n. Hg) (L/min) (L/mi	Date:	06	/20/01	P _{bar.} , in. H	g:	25.2	97	Operator:		RW,	FE,JA
Sample Numbers (L/min) (n. Hg) (L/min) (L/mi	VOST Tube	Leal	Check	Sampling	Sai	mpling	Probe	Condenser	Meter	Meter	Pump
Numbers Comin Com Hg							1				Vacuum
Set 1	,	ì	•		l .						
A-3409 A-3410 A-3410 A-3410 A-3410 A-3410 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3411 A-3412 A-3412 A-3412 A-3412 A-3413 A-3414 A-3414 A-3414 A-3414 A-3414 A-3414 A-3414 A-3414 A-3415 A-3415 A-3415 A-3415 A-3416 A-3416 A-3416 A-3416 A-3416 A-3417 A-3416 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3418 A-3418 A-3418 A-3419 A-3418 A-3419 A		,			· ` · · · ·	 _				. ,	13.0
A-3410											13.0
A-3411 A-3411 A-3412 Post-test 14:25 Double 14:25 25 130 11.0 33 14:413 11.0 14:25 25 130 11.0 34 24:164 14:25 25 130 11.0 34 24:164 14:25 25 130 11.0 34 24:164 14:25 25 130 10.0 34 24:164 14:25 25 130 10.0 35 24:164 14:25 25 130 10.0 35 1		0.001	10	· · · · · ·		<u> </u>					13.0
											13.0
Post-test 17425 25 130 11.0 34 24.164 Max Average 130 10.7 32 24.164 Max Average 130 10.7 32 24.164 Max Average 130 10.7 32 32 32.164 Max Average 32.165 Max Average 32.165 Max Av	A-3411										13.0
Set 2			at toot								13.0
Set 2				Total			130	11.0	J -1		
Set 2		0.003	10		0.23	23	120	10.7	32	24.104	13.0
A-3412					44.00	T 0				0.000	12.0
A-3413 A-3414 A-3415 A-3415 A-3415 A-3416 A-3416 A-3416 A-3416 A-3417 A-3417 A-3417 A-3417 A-3417 A-3417 A-3417 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3418 A-3417 A-3418 A-3418 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3419 A-3419 A-3419 A-3419 A-3419 A-3419 A-3419 A-3420 A-3419 A-3420 A-3419 A-3420 A-3419 A-3420 A-3430 A-3420 A-3420 A-3430 A-3420 A-3430 A-3420 A-3430 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3440 A-3420 A-3450 A			a contract of								12.0
A-3414 A-3414		0.000	16	1							12.0
Hat-Sef 14:-56 20											
Post-test 15:00 24 130 10.0 35 24.452 Max:	A-3414		<u> </u>	ļ —							12.0 12.0
No.008			L								
Set 3							130	10.0	35		12.0
Set 3		0.008	16		0:24	J 24	 	100	~_	24.452	
A-3415 A-3416 A-3417 A-3417 A-3417 A-3417 A-3417 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3419 A-3418 A-3419 A-3420 A-3418 A-3420 A-3420 A-3420 A-3420 A-3420 A-3420 A-3421 A-3420 A-3420 A-3420 A-3420 A-3420 A-3420 A-3420 A-34320 A-34320 A-34320 A-34320 A-34340 A-3440 A-							1				12.0
A-3416 A-3417 A-3416 A-3417 A-3418 A-3417 A-3418 A-3417 A-3418 A-3418 A-3418 A-3418 A-3418 A-3418 A-3418 A-3418 A-3418 A-3418 A-3419 A-3418 A-3419 A-3418 A-3418 A-3418 A-3419 A-3418 A-3418 A-3418 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3419 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3419 A-3419 A-3418 A-3419 A-3419 A-3418 A-3418 A-3419 A-3418 A-3419 A-3418 A-3419 A-3418 A-3418 A-3418 A-3419 A-3418 A-3419 A-3418 A-	Set 3		retest								5.0
A-3417 15:25 15 130 11.0 35 5.650 5.550	A-3415	0.001	16	11							5.0
15:30	A-3416		İ								5.0
15:35 25 130 11.0 35 9.514 5 15:40 30 130 11.0 35 11.410 5 15:45 35 35 130 11.0 35 13.348 5 15:45 35 130 11.0 35 13.348 5 15:50 40 130 11.0 35 15.321 5 15:55 45 130 11.0 35 17.238 5 16:00 50 130 11.0 35 17.238 5 16:00 50 130 11.0 35 19.154 5 16:00 5 130 11.0 35 21.118 5 16:00 5 130 11.0 35 21.118 5 16:00 5 130 11.0 35 21.118 5 16:00 5 130 11.0 35 21.118 5 16:10 60 130 12.0 35 24.206 5 16:15 65 130 12.0 35 24.206 5 16:15 65 130 12.0 35 24.206 5 16:15 65 130 11.0 35 24.206 16:15 65 130 11.0 31 2.646 44 44 44 44 45 44 45	A-3417										5.0
15:40 30 130 11.0 35 11.410 55 15:45 35 130 11.0 35 13.348 55 15:50 40 130 11.0 35 15.321 55 15:55 45 130 11.0 35 17.238 55 16:00 50 130 11.0 35 17.238 55 16:00 50 130 11.0 35 17.238 55 16:00 50 130 11.0 35 17.238 55 16:00 55 130 11.0 35 21.18 55 16:00 6 16:15 65 130 12.0 35 23.165 55 17.238 55 130 11.0 35 21.18 55 17.238 55 130 11.0 35 21.18 55 18.20 16:15 65 130 12.0 35 24.206 55 18.20 16:15 65 130 12.0 35 24.206 55 18.20 16:15 65 130 11.0 35 24.206 55 18.21 16:29 0 130 11.0 31 0.000 44 18.24 16:39 10 130 11.0 31 5.400 44 18.24 16:39 10 130 11.0 31 5.400 44 18.24 16:44 15 130 11.0 32 7.965 44 18.24 16:59 30 130 11.0 33 10.607 44 18.24 16:59 30 130 11.0 33 13.270 44 18.24 16:59 30 130 11.0 34 15.873 44 18.25 130 11.0 34 15.873 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 11.0 35 23.825 44 18.25 130 13.0 13.0 13.0 13.0 18.25 13.25 13.25 13.0 13.0 18.25 13.25 13.25 13.0 13.0 18.25											5.0
15:45 35 130 11.0 35 13.348 5.5 15:50 40 130 11.0 35 15.21 5.5 16:00 50 130 11.0 35 15.23 5.5 16:00 50 130 11.0 35 15.21 5.5 16:00 55 130 11.0 35 17.238 5.5 Post-test 16:10 60 130 11.0 35 21.118 5.5 0.000 6 16:15 65 130 12.0 35 23.165 5.5 0.000 6 16:15 65 130 12.0 35 24.206 5.5 Average 130 11.2 35 24.206 Max: Set 4 Pretest Target: 16:29 0 130 11.0 31 0.000 4 A.3418 0.000 5 1 16:34 5 130 11.0 31 2.646 4 A.3419 16:44 15 130 11.0 31 2.646 4 A.3420 16:44 15 130 11.0 32 7.965 4 A.3420 16:44 15 130 11.0 32 7.965 4 A.3420 16:54 25 130 11.0 33 10.607 4 A.3420 16:54 25 130 11.0 33 13.270 4 A.3420 16:54 25 130 11.0 33 13.270 4 A.3420 16:54 25 130 11.0 33 13.270 4 A.3420 16:54 25 130 11.0 33 13.270 4 A.3420 16:54 25 130 11.0 33 13.270 4 A.3420 16:54 25 130 11.0 34 15.873 4 A.3420 16:59 30 130 11.0 34 15.873 4 A.3421 Average 130 11.0 35 23.825 4 Average 130 11.1 33 24.404 4 Average 130 11.1 33 24.404 4 Average 130 11.1 33 24.404 4 Average 130 11.1 33 24.404 4 Average 130 11.1 33 24.404 4 Average 130 11.1 33 24.404 4 Average Dry Oxygen Concentration Co2 % 20.5				I	15:35						5.0
15:50					15:40						5.0
15:55 45 130 11.0 35 17.238 55 16:00 50 130 11.0 35 19.154 55 16:05 55 130 11.0 35 21.118 55 16:05 55 130 11.0 35 21.118 55 16:06 16:15 65 130 12.0 35 23.165 55 17.08					15:45	35	130				5.0
16:00 50 130 11.0 35 19.154 55 16:05 55 130 11.0 35 21.118 55 16:10 60 130 12.0 35 23.165 55 17 18 15 55 130 12.0 35 24.206 55 18 18 18 18 18 18 18 19 10:15 65 130 12.0 35 24.206 15 10:10 10:15 65 130 12.0 35 24.206 15 10:10 10:15 65 130 12.0 35 24.206 15 10:10 10:10 15 130 11.0 31 0.000 4 10:34 5 130 11.0 31 0.000 4 10:39 10 130 11.0 31 0.000 4 10:39 10 130 11.0 31 0.000 4 10:44 15 130 11.0 31 0.000 4 10:44 15 130 11.0 33 10.607 4 10:45 20 130 11.0 33 10.607 4 10:45 20 130 11.0 33 10.607 4 10:59 30 130 11.0 33 13.270 4 10:59 30 130 11.0 34 15.873 4 10:00 5 17:15 46 130 11.0 35 23.825 4 Post-test 17:14 45 130 11.0 35 23.825 4 Post-test 17:14 45 130 11.0 35 23.825 4 Post-test 17:14 45 130 11.0 35 23.825 4 Post-test 17:15 46 130 11.0 35 23.825 4 Post-test 17:14 45 130 11.0 35 24.404 4 Post-test 17:15 46 130 11.0 35 24.404 4 Post-test 17:15 46 130 11.0 35 24.404 4 Post-test 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 10:16 Post-test 10:16 10					15:50	40	130		35	15.321	5.0
Note					15:55	45	130	11.0	35	17.238	5.0
16:05 55 130 11.0 35 21.118 55							130	11.0	35	19.154	5.0
Post-test							130	11.0	35	21.118	5.0
0.000 6		Po	st-test				130	12.0	35	23.165	5.0
Total								12.0	35	24.206	5.0
Average	, i			Total	1:05					24.206	Max:
Set 4							130	11.2	35		5.0
A-3418	Set 4	Pr	retest		16:29	0		11.0	31	0.000	4.0
A-3419 A-3420 A-3421 A-3421						1	1 .	11.0			4.0
A-3420 16:44 15 130 11.0 32 7.965 4 16:49 20 130 11.0 33 10.607 4 16:54 25 130 11.0 33 13.270 4 16:59 30 130 11.0 34 15.873 4 17:04 35 130 11.0 34 15.873 4 17:09 40 130 12.0 34 21.135 4 Post-test 17:14 45 130 11.0 35 23.825 4 0.000 5 17:15 46 130 11.0 35 23.825 4 0.000 5 17:15 46 130 11.0 35 24.404 4 Average 130 11.1 33 24.404 Max: Average 130 11.1 33 4 Condensate A-3421 NA	· ·		! -				American Company of Contract	4	31	5.400	4.0
16:49 20 130 11.0 33 10.607 44 16:54 25 130 11.0 33 13.270 44 16:59 30 130 11.0 34 15.873 44 17:04 35 130 11.0 34 18.500 44 17:09 40 130 12.0 34 21.135 44 Post-test 17:14 45 130 11.0 35 23.825 44 0.000 5 17:15 46 130 11.0 35 23.825 44 0.000 5 17:15 46 130 11.0 35 24.404 44 Average 130 11.1 33 24.404 Max: Average 130 11.1 33 44 Average 130			†					1			4.0
16:54 25 130 11.0 33 13.270 44 16:59 30 130 11.0 34 15.873 44 17:04 35 130 11.0 34 18.500 44 17:09 40 130 12.0 34 21.135 44 Post-test 17:14 45 130 11.0 35 23.825 44 0.000 5 17:15 46 130 11.0 35 24.404 44 Total 0:46 46 30 11.1 33 24.404 Max: Average 130 11.1 33 44 Average 130 11.1 32 44 Average 130 11.1 34 44 Average 130 11.1 34 44 Avera			i		l .						4.0
16:59 30 130 11.0 34 15.873 4 17:04 35 130 11.0 34 18:500 4 17:09 40 130 12.0 34 21.135 4 17:14 45 130 11.0 35 23.825 4 17:15 46 130 11.0 35 23.825 4 17:15 46 130 11.0 35 24.404 4 17:04 46 46 46 46 46 46 46											4.0
17:04 35 130 11.0 34 18.500 4 17:09 40 130 12.0 34 21.135 4 Post-test 17:14 45 130 11.0 35 23.825 4 0.000 5 17:15 46 130 11.0 35 24.404 4 Total 0:46 46 30 11.1 33 24.404 Max: Average 130 11.1 33 4 Average NA NA NA NA NA NA NA N											4.0
17:09 40 130 12.0 34 21.135 44 Post-test 17:14 45 130 11.0 35 23.825 44 0.000 5 17:15 46 130 11.0 35 24.404 44 Total 0:46 46 30 11.1 33 24.404 Max: Average 130 11.1 33 44 Final Condensate Volume:			ļ								4.0
Post-test 17:14 45 130 11.0 35 23.825 44			 								4.0
O,000 5		Da	et_teet						-		4.0
Total	ŀ		,								4.0
Average		0.000	3	Total			130	11.0			
Condensate					0.40	40	130	11.1	33	24.404	4.0
A-3421	Condensate		<u></u>	rttelage	Tenax F	linse:				[]	
NA ML NA ML					NA		940-77 / Pro Joseph 22				
ADDITIONAL INPUTS Symbol Units Set 1 Set 2 Set 3 Set 4 Average			ume:		100000000000000000000000000000000000000			10000000000000000000000000000000000000			
Symbol Units Set 1 Set 2 Set 3 Set 4 Average	40	mL			10 May 200 111100		10 mm	mL	a.		
Average Dry Oxygen Concentration Co2 % 20.5 <			1	1	,		,	Set 2	Set 3	Set 4	Average
Process Gas Flow (dry, STP) @ 68°F Qsd dscm/sec 0.330	Average Dry	Ovygen (Concentratio	ın.							20.5
CALCULATED SAMPLING PARAMETERS Symbol Units Set 1 Set 2 Set 3 Set 4 Net Sample Volume @ Standard Conditions VmStd dsL 19.577 19.629 19.431 19.718 78.3 VmStd=17.647 * Y * Pbar * Vm/(Fm + 460) Avg. Actual Sampling Rate, Qm=Vm/min Qm L/min 0.967 1.019 0.372 0.531 0.7											0.330
Symbol Units Set 1 Set 2 Set 3 Set 4 Net	, TOCESS GAS F	iow (ury, c	J11 7 W 00 F						0.000	3.500	0.000
Sample Volume @ Standard Conditions VmStd dsL 19.577 19.629 19.431 19.718 78.3 VmStd=17.647 * Y * Pbar * Vm/(Fm + 460) Avg. Actual Sampling Rate, Qm=Vm/min Qm L/min 0.967 1.019 0.372 0.531 0.7			ļ	CALCUI		.,.			Set 3	Set 4	Not
VmStd=17.647 * Y * Pbar * Vm/(Fm + 460) Qm L/min 0.967 1.019 0.372 0.531 0.7	Sample Velv	mo @ \$4	andard Con	ditions							78.355
Avg. Actual Sampling Rate, Qm=Vm/min Qm L/min 0.967 1.019 0.372 0.531 0.7				JILIO115	viiiold	USL	19.511	15.029	13.431	19.7 10	10.000
				/m/min	Om	1 /min	0.067	1 010	0 373	0.531	0.722
Avg. Samping Nate, QmStu-vmStu/min QmStu ust/min 0.765 0.616 0.255 0.425 0.5											0.722
	avg. Samplir	ng Kate, (∡msta=vms	sid/min	umsta	asL/min	0.783	0.818	0.299	0.429	0.58

Table B-6. 0031-END-1.					T
Table D-0. VVJI-END-1.		DICENTRATIONS	! !		I
	micrograms p	per dry standard cubic			
Project:	01-1062-01-	Lab Report Date:	08/20/01		
Run Date:	6/20/2001	Lab Report Status:	Final		
Run Identification: Analyte	0031-END-1			Pu	n Total
Analyte				Flag	μg/dscn
Acetone			were .	В	9.2e1
Acrylonitrile			A. A. W. A. A. A. A. A. A. A. A. A. A. A. A. A.	<	3.6e1
Benzene				<	3.1e0
Bromobenzene				<	1.5e0
Bromochloromethane				<	1.9e0
Bromodichloromethane				<	1.5e0
Bromoform				<	2.3e0
Bromomethane				<,J	2.9e0
2-Butanone				<,J	1.1e1
n-Butylbenzene			-	<	1.9e0
sec-Butylbenzene		,,	2	<	1.1e0
tert-Butylbenzene	******			<	1.8e0
Carbon disulfide		U. U. A. A. A. A. A. A. A. A. A. A. A. A. A.		<	1.5e1
Carbon tetrachloride				<	2.0e0
Chlorobenzene				<.J	1.2e0
Chlorodibromomethane				<	1.9e0
Chloroethane			A STATE OF THE STA	۷,>	2.6e0
Chloroform				<	5.1e0
Chloromethane				<	3.7e1
2-Chlorotoluene				<	7.5e-1
4-Chlorotoluene				<	7.5e-1
1,2-Dibromo-3-chloropropane				<	3.6e0
1.2-Dibromoethane				<	2.6e0
Dibromomethane				<	2.2e0
1,2-Dichlorobenzene				<	2.3e0
1,3-Dichlorobenzene				<	1.3e0
1,4-Dichlorobenzene				<	1.8e0
Dichlorodifluoromethane				<,J	2.0e0
1,1-Dichloroethane				<	1.9e0
1,2-Dichloroethane				<,J	2.0e0
1,1-Dichloroethene				<,J	2.3e0
cis-1,2-Dichloroethene				<	1.9e0
trans-1,2-Dichloroethene				<	2.0e0
1,2-Dichloropropane				<,J	1.7e0
1,3-Dichloropropane				<	2.2e0
2,2-Dichloropropane				<	2.0e0
1,1-Dichloropropene				<	2.3e0
cis-1,3-Dichloropropene				. <	1.7e0
trans-1,3-Dichloropropene				<	1.9e0
Ethylbenzene				<	1.2e0
Hexachlorobutadiene				<	2.8e0
2-Hexanone				<	7.1e0
Isopropylbenzene			AND AND AND AND AND AND AND AND AND AND	<	8.9e-1
p-Isopropyltoluene				<	1.4e0
Methylene chloride				В	2.2e1
4-Methyl-2-pentanone				<	7.5e0
T-MCHINI-Z-PCHICHIONC					

Table B-6. 0031-END-1.					
		ONCENTRATIONS		' '	
Drainati	micrograms 01-1062-01-	per dry standard cub Lab Report Date:	ic meter 08/20/01		
Project: Run Date:	6/20/2001	Lab Report Status:	Final		
Run Identification:	0031-END-1	Lab Roport Otatus.	i iidi		
Analyte	0001 2112 1	<u></u>		Rur	n Total
				Flag	μg/dscm
n-Propylbenzene				<	8.4e-1
Styrene				<	1.0e0
1,1,1,2-Tetrachloroethane				<	1.3e0
1,1,2,2-Tetrachloroethane				<	2.8e0
Tetrachloroethene				<	1.9e0
Toluene				<,J	3.6e0
1,2,3-Trichlorobenzene				<	2.7e0
1,2,4-Trichlorobenzene				<	2.8e0
1,1,1-Trichloroethane				<	2.4e0
1,1,2-Trichloroethane				<	2.2e0
Trichloroethene			A SAME TOWNS IN THE PARTY	<	2.0e0
Trichlorofluoromethane				<,J	2.0e0
1,2,3-Trichloropropane				<	3.1e0
1,2,4-Trimethylbenzene				<	1.3e0
1,3,5-Trimethylbenzene				<	7.5e-1
Vinyl chloride	detail for a consideration of the			<,J	2.3e0
m-Xylene & p-Xylene				<	5.6e0
o-Xylene				<,J	1.0e0
TICs					
Pentane, 3,3-dimethyl-				N,J,M	7.5e-1
Hexane, 2-methyl-				N,J,M	4.0e0
Pentane, 2,3-dimethyl-				N,J,M	4.0e-1
Hexane, 3-methyl-		,		N,J,M	9.7e0
Cyclohexene				N,J,M	4.6e-1
Cyclobutane, ethenyl-				N,J,M	1.5e0
Cyclopentane, 1,2-dimethyl-, t				N,J,M	1.0e0
Cyclohexane, methyl-				N,J,M	2.6e0
Hexane, 2,4-dimethyl-				N,J,M	2.3e0
Cyclopentane, ethyl-				N,J,M	5.2e-1
Methane, trichloronitro-				N,J,M	4.6e0
Benzonitrile				N,J,M	2.4e0
Undecane				N,J,M	6.4e0
Undecane, 5-methyl-				N,J,M	2.3e0
Dodecane	- AND AND SHOOT STATE OF THE ST			N,J,M	3.3e2
Tridecane				N,J,M	4.0e1
Tetradecane				N,J,M	1.3e1
Hexadecane				N,J,M	2.7e0
Pentane, 3-ethyl-					
Cyclopentane, 1,2-dimethyl-	. =				
, p					

Table B-9. 0031-END-1.		ASS FLOW RATE			
		rams per second			
Project:	01-1062-01-086	Lab Report Date:	08/20/01		
Run Date:	6/20/2001	Lab Report Status:	Final		
Run Identification:	0031-END-1			T Dur	n Total
Analyte				Flag	g/sec
Acetone				В	3.0e-5
Acrylonitrile				<	1.2e-5
Benzene				<	1.0e-6
Bromobenzene				· · · · · · · · · · · · · · · · · · ·	5.0e-7
Bromochloromethane				_ <	6.3e-7
Bromodichloromethane				<	5.0e-7
Bromoform				<	7.6e-7
Bromomethane				<,J	9.7e-7
2-Butanone				<,J	3.7e-6
n-Butylbenzene				<	6.3e-7
sec-Butylbenzene				<	3.6e-7
tert-Butylbenzene				<	5.9e-7
Carbon disulfide				<	5.0e-6
Carbon tetrachloride				<	6.7e-7
Chlorobenzene				<,j	4.0e-7
Chlorodibromomethane				<	6.3e-7
Chloroethane				<,J	8.4e-7
Chloroform	A 102 1990 111 11 11 11 11 11 11 11 11 11 11 11 1		pgs. vi	<	1.7e-6
Chloromethane				<	1.2e-5
2-Chlorotoluene	AM AN AND THE PRINT OF THE			<	2.5e-7
4-Chlorotoluene				<	2.5e-7
1,2-Dibromo-3-chloropropane	9			<	1.2e-6
1,2-Dibromoethane				<	8.4e-7
Dibromomethane				<	7.2e-7
1,2-Dichlorobenzene			And the Annual Control of the Annual Control	<	7.6e-7
1,3-Dichlorobenzene				<	4.2e-7
1,4-Dichlorobenzene				<	5.9e-7
Dichlorodifluoromethane				<,J	6.7e-7
1,1-Dichloroethane				<	6.3e-7
1,2-Dichloroethane				<,J	6.7e-7
1,1-Dichloroethene		AMA BANKA TANAN		<,J	7.6e-7
cis-1,2-Dichloroethene				<	6.3e-7
trans-1,2-Dichloroethene	45.00 (5.00)			<	6.7e-7
1,2-Dichloropropane				<,J	5.5e-7
1,3-Dichloropropane				<	7.2e-7
2,2-Dichloropropane				<	6.7e-7
1,1-Dichloropropene				<	7.6e-7
cis-1,3-Dichloropropene				<	5.5e-7
trans-1,3-Dichloropropene				<	6.3e-7
Ethylbenzene				<	3.9e-7
Hexachlorobutadiene				<	9.3e-7
2-Hexanone				<	2.4e-6
Isopropylbenzene			and the state of t	<<	2.9e-7
p-Isopropyltoluene				<	4.6e-7
Methylene chloride				В	7.2e-6
4-Methyl-2-pentanone				<	2.5e-6
Naphthalene				<	8.8e-7

Table B-9. 0031-END-1.					
Table B-9. 0031-END-1.	M	ASS FLOW RATE	l i		
		rams per second			
Project:		Lab Report Date:	08/20/01		
Run Date:	6/20/2001	Lab Report Status:	Final		
Run Identification:	0031-END-1				
Analyte				Rur Flag	Total
n-Propylbenzene				Flag	g/sec 2.8e-7
Styrene				`	3.3e-7
1,1,1,2-Tetrachloroethane				<	4.2e-7
1,1,2,2-Tetrachloroethane					9.3e-7
Tetrachloroethene				-	6.3e-7
Toluene					1.2e-6
					8.8e-7
1,2,3-Trichlorobenzene					9.3e-7
1,2,4-Trichlorobenzene	5 Ac. 40° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	A. MANAGARA			8.0e-7
1,1,1-Trichloroethane					
1,1,2-Trichloroethane					7.2e-7
Trichloroethene			Lay		6.7e-7
Trichlorofluoromethane				<,J	6.7e-7
1,2,3-Trichloropropane				<	1.0e-6
1,2,4-Trimethylbenzene					4.2e-7
1,3,5-Trimethylbenzene			1 - 1 m	<	2.5e-7
Vinyl chloride				<,J	7.6e-7
m-Xylene & p-Xylene				<	1.9e-6
o-Xylene				<,J	3.3e-7
TICs	 				
Pentane, 3,3-dimethyl-				N,J,M	2.5e-7
Hexane, 2-methyl-				N,J,M	1.3e-6
Pentane, 2,3-dimethyl-				N,J,M	1.3e-7
Hexane, 3-methyl-				N,J,M	3.2e-6
Cyclohexene	0.1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(A)	A. W. W. W. W. W. W. W. W. W. W. W. W. W.	N,J,M	1.5e-7
Cyclobutane, ethenyl-			A A CORP. SPECIAL DESIGNATION OF THE PROPERTY	N,J,M	5.0e-7
Cyclopentane, 1,2-dimethyl-, t				N,J,M	3.3e-7
Cyclohexane, methyl-				N,J,M	8.4e-7
Hexane, 2,4-dimethyl-				N,J,M	7.6e-7
Cyclopentane, ethyl-				N,J,M	1.7e-7
Methane, trichloronitro-				N,J,M	1.5e-6
Benzonitrile				N,J,M	8.0e-7
Undecane				N,J,M	2.1e-6
Undecane, 5-methyl-				N,J,M	7.6e-7
Dodecane				N,J,M	1.1e-4
Tridecane				N,J,M	1.3e-5
Tetradecane				N,J,M	4.2e-6
Hexadecane				N,J,M	8.8e-7
Pentane, 3-ethyl-					
Cyclopentane, 1,2-dimethyl-			.,		
- /				•	

Table B-7.	0031-ST	RT-2.	ı	1	i	i	i	1		
				ST SAM	PLING DA					
Site:		Offgas Tie-in	Run No.:		0031-S		Meter Box I	No.:		2
Project:	01-1062-		Run Type:		Te		Y-factor:			.005
Date:	06/	21/01	P _{bar.} , in. H	g:	25.2	10	Operator:		R۱	V,FE
				·						
VOST Tube	Leak	Check	Sampling		mpling	Probe	Condenser	Meter	Meter	Pump
Sample	Rate	@ vacuum	Rate		ime	Temp.	Temp.	Temp.	Volume	Vacuum
Numbers	(L/min)	(in. Hg)	(L/min)	(24 hr)	(min.)	(°C)	(°C)	(°C)	(L)	(in. Hg)
Set 1		etest	Target:	8:15		130	5.0	18	0.000	6.0
A-3379	0.008	6	, 1			130	6.0	20	2.137	6.0
A-3380				8:25		130	9.0	20	4.245	5.0
A-3381		L.		8:30		130	8.0	21	6.361	5.0
				8:35		130	9.0	22	8.488	5.0
				8:40		130	8.0	23	10.598	5.0
				8:45		130	8.0	23	12.765	5.0
			I	8:50		130	8.0	24	14.885	5.0
				8:55	40	130	8.0	24	17.045	5.0
	L			9:00	45	130	9.0	25	19.141	5.0
				9:05	50	130	9.0	26	21.274	5.0
	Pos	st-test		9:10	55	130	9.0	26	23.368	5.0
	0.007	6		9:12		130	9.0	26	24.311	5.0
			Total	0:57	57				24.311	Max:
			Average_			130	8.1	23		6.0
Set 2	Pro	etest	Target:	9:27	0	130	10.0	22	0.000	6.0
A-3382	0.000	15	1	9:32	5	130	10.0	22	3.476	6.0
A-3383				9:37	10	130	10.0	22	6.021	6.0
A-3384	· ·			9:42	15	130	11.0	24	9.148	4.0
				9:47	20	130	11.0	25	11.758	4.5
				9:52	25	130	12.0	25	14.601	4.5
				9:57	30	130	13.0	26	17.682	4.5
				10:02	35	130	13.0	26	20.446	4.5
	Pos	st-test		10:07	40	130	11.0	27	23.445	4.5
	0.000	15		10:08	41	130	11.0	27	24.060	4.5
			Total	0:41	41				24.060	Max:
			Average			130	11.2	25		6.0
Set 3	Pre	etest	Target:	10:19	0	130	10.0	31	0.000	5.0
A-3385	0.006	15		10:24	5	130	10.0	31	2.407	5.0
A-3386				10:29	10	130	10.0	31	5.233	5.0
A-3387				10:34	15	130	10.0	31	8.131	5.0
				10:39	20	130	10.0	31	10.751	5.0
				10:44	25	130	10.0	31	12.879	5.0
				10:49	30	130	10.0	31	16.204	5.0
				10:54	35	130	10.0	31	19.033	5.0
	Pos	t-test		10:59	40	130	11.0	32	21.853	5.0
	0.006	15		11:04		130	11.0	32	24.106	5.0
			Total	0:45					24.106	Max:
			Average			130	10.2	31		5.0
Set 4	Pr	etest	Target:	11:12	0	130	10.0	31	0.000	5.0
A-3388	0.003	15		11:17		130	10.0	31	2.904	5.0
A-3389				11:22		130	10.0	31	5.259	5.0
A-3390				11:27		130	10.0	31	7.951	5.0
				11:32		130	10.0	31	10.780	5.0
				11:37	25	130	10.0	31	13.986	5.0
				11:42		130	10.0	31	16.832	5.0
				11:47		130	10.0	31	20.786	5.0
	Pos	t-test		11:52		130	11.0	32	24.240	5.0
	0.003	15	Total	0:40					24.240	Max:
			Average			130	10.1	31		5.0
Condensate	· · · · · · · · · · · · · · · · · · ·		. <u> </u>	Tenax R	inse:		Rinse:			
A-3391 Final Conder		ıma:		NA Tenav R	inse Vol.:	NA Anasorb	Rinse Vol.:			
	mL Voic		:	NA	mL	NA	mL Tillse voi			
					IONAL INP					
				Symbol		Set 1	Set 2	Set 3	Set 4	Average
Average Dry			on	Co2	%	20.5		20.5		20.5
Process Gas F	low (dry, \$7	TP) @ 68°F		Qsd	dscm/sec	0.330		0.330	0.330	0.330
			CALCUL		AMPLING					
				Symbol		Set 1	Set 2	Set 3	Set 4	Net
Sample Volu				VmStd	dsL	20.383	20.059	19.662	19.777	79.881
VmStd=17.647										
Avg. Actual S	Sampling	Rate, Qm=	Vm/min	Qm	L/min	0.427		0.536		0.539
Avg. Samplir	ng Rate, C	<mark>}mStd=V</mark> m\$	Std/min	QmStd	dsL/min	0.358	0.489	0.437	0.494	0.445

Table B-7. 0031-STRT-2.	· · · · · · · · · · · · · · · · · · ·				i
1	co	NCENTRATIONS	i !	•	1
	micrograms p	er dry standard cubi			
Project:		Lab Report Date:	08/20/01		
Run Date:	6/21/2001 0031-STRT-2	Lab Report Status:	Final		
Run Identification: Analyte	0031-STRT-2	<u> </u>		Ru	n Total
Allalyte				Flag	μg/dscm
Acetone				J,B	6.3e1
Acrylonitrile				<	3.5e1
Benzene				<,J	2.8e0
Bromobenzene				<	1.5e0
Bromochloromethane				<	1.9e0
Bromodichloromethane				<	1.5e0
Bromoform				<	2.3e0
Bromomethane			A CONTRACTOR OF THE CONTRACTOR	۷,>	1.9e0
2-Butanone				<,J	1.1e1
n-Butylbenzene				<	1.9e0
sec-Butylbenzene				<	1.1e0
tert-Butylbenzene				<	1.8e0
Carbon disulfide				<	1.6e1
Carbon tetrachloride				<	2.0e0
Chlorobenzene				<	1.2e0
Chlorodibromomethane				<	1.9e0
Chloroethane				<,J	2.1e0
Chloroform				<	4.1e0
Chloromethane				<,J	1.5e1
2-Chlorotoluene				<	7.4e-1
4-Chlorotoluene			A - MANAGEMENT - TOTAL CONTROL OF STREET		7.4e-1
1,2-Dibromo-3-chloropropane				<	3.5e0
1,2-Dibromoethane				<	2.5e0
Dibromomethane				<	2.1e0
1,2-Dichlorobenzene				<	2.3e0
1,3-Dichlorobenzene				<	1.3e0
1,4-Dichlorobenzene				<	1.8e0
Dichlorodifluoromethane		. A		_ <	2.5e0
1,1-Dichloroethane				<	1.9e0
1,2-Dichloroethane				<	2.0e0
1,1-Dichloroethene				<,J	2.0e0
cis-1,2-Dichloroethene				<	1.9e0
trans-1,2-Dichloroethene				<	2.0e0
1,2-Dichloropropane				<	1.6e0
1,3-Dichloropropane				<	2.1e0
2,2-Dichloropropane				<	2.0e0
1,1-Dichloropropene				<	2.3e0
cis-1,3-Dichloropropene				<	1.6e0
trans-1,3-Dichloropropene					1.9e0
Ethylhenzene				<	1.2e0
Hexachlorobutadiene				<	2.8e0
2-Hexanone				<	7.0e0
Isopropylbenzene				<	8.8e-1
p-Isopropyltoluene				<	1.4e0
Methylene chloride				<,B	1.4e1
4-Methyl-2-pentanone		A A PAR WAR WAR WAR AND A PARAMETER AND A PARA		<	7.4e0
Naphthalene				<	2.6e0
Liahimaene					

Table B-7. 0031-STRT-2.	Ţ				
	-	ONCENTRATIONS		,	
Duningto	micrograms 01-1062-01-	oer dry standard cubi Lab Report Date:	ic meter 08/20/01		
Project: Run Date:	6/21/2001	Lab Report Status:	Final		
Run Identification:	0031-STRT-2	Lab r toport otatao.			
Analyte		· · · · · · · · · · · · · · · · · · ·			n Total
-				Flag	μg/dscm
n-Propylbenzene		- 6 garage and the control of the co			8.3e-1
Styrene				<	9.8e-1
1,1,1,2-Tetrachloroethane					1.3e0
1,1,2,2-Tetrachloroethane				<	2.8e0
Tetrachloroethene					1.9e0
Toluene				\ <,J	3.8e0
1,2,3-Trichlorobenzene					2.6e0
1,2,4-Trichlorobenzene			M III	<	2.8e0
1,1,1-Trichloroethane					2.4e0
1,1,2-Trichloroethane			- 11 M		2.1e0
Trichloroethene					2.0e0
Trichlorofluoromethane				< ,J	2.0e0
1,2,3-Trichloropropane					3.0e0
1,2,4-Trimethylbenzene					1.3e0
1,3,5-Trimethylbenzene				<	7.4e-1
Vinyl chloride				<,J	1.6e0
m-Xylene & p-Xylene				<	5.5e0
o-Xylene		13/600		<	9.8e-1
TICs					
Hexane, 2-methyl-		9837		N,J,M	3.8e0
Pentane, 2,3-dimethyl-				N,J,M	1.4e0
Hexane, 3-methyl-				N,J,M	3.4e0
Pentane, 3-ethyl-			1000	N,J,M	4.3e-1
Cyclohexene				N,J,M	2.3e0
Cyclopentane, 1,2-dimethyl-				N,J,M	6.6e-1
Cyclohexane, methyl-				N,J,M	2.5e0
Hexane, 2,4-dimethyl-			All All All All All All All All All All	N,J,M	2.5e0
Cyclopentane, ethyl-				N,J,M	4.5e-1
Benzonitrile				N,J,M	9.0e-1
Tridecane				N,J,M	1.0e0
Undecane				N,J,M	3.0e0
Decane, 2,2,5-trimethyl-				N,J,M	7.5e-1
Undecane, 5-methyl-				N,J,M	2.6e0
Dodecane				N,J,M	2.8e2
Dodecane, 6-methyl-				N,J,M	6.5e-1
Undecane, 2,6-dimethyl-				N,J,M	5.8e-1
Tridecane				N,J,M	3.0e1
Tetradecane				N,J,M	1.2e1
Pentane, 3,3-dimethyl-	*****				-

Table B-7. 0031-STRT-2.		!	:		
		ASS FLOW RATE			
Project:		rams per second Lab Report Date:	08/20/01		
Run Date:	6/21/2001	Lab Report Status:	Final		
Run Identification:	0031-STRT-2				
Analyte				ı	Total
				Flag	g/sec
Acetone	days or the state of the state			J,B	2.1e-5
Acrylonitrile					1.2e-5
Benzene				, <, J	9.1e-7
Bromobenzene			and the second second	<	5.0e-7
Bromochloromethane					6.2e-7
Bromodichloromethane					5.0e-7
Bromoform					7.4e-7
Bromomethane				<,J	6.2e-7
2-Butanone				<,J	3.7e-6
n-Butylbenzene				<	6.2e-7
sec-Butylbenzene				<	3.5e-7
tert-Butylbenzene					5.8e-7
Carbon disulfide				<	5.4e-6
Carbon tetrachloride				< _	6.6e-7
Chlorobenzene				<	3.9e-7
Chlorodibromomethane				<u> </u>	6.2e-7
Chloroethane				<,J	7.0e-7
Chloroform				<	1.4e-6
Chloromethane				<,J	5.0e-6
2-Chlorotoluene				<	2.4e-7
4-Chlorotoluene				< -	2.4e-7
1,2-Dibromo-3-chloropropan	e				1.2e-6
1,2-Dibromoethane				<	8.3e-7
Dibromomethane				<	7.0e-7
1,2-Dichlorobenzene				<	7.4e-7
1,3-Dichlorobenzene				<	4.1e-7
1,4-Dichlorobenzene				<	5.8e-7
Dichlorodifluoromethane				<	8.3e-7
1,1-Dichloroethane	-			<	6.2e-7
1,2-Dichloroethane				<	6.6e-7
1,1-Dichloroethene				<,J	6.6e-7
cis-1,2-Dichloroethene				<	6.2e-7
trans-1,2-Dichloroethene				<	6.6e-7
1,2-Dichloropropane				<	5.4e-7
1,3-Dichloropropane				<	7.0e-7
2,2-Dichloropropane				<	6.6e-7
1,1-Dichloropropene				<	7.4e-7
cis-1,3-Dichloropropene				<	5.4e-7
trans-1,3-Dichloropropene				<	6.2e-7
Ethylbenzene				<	3.8e-7
Hexachlorobutadiene		4.00		<	9.1e-7
2-Hexanone				<	2.3e-6
Isopropylbenzene				<	2.9e-7
p-Isopropyltoluene				<	4.5e-7
Methylene chloride				<,B	4.5e-6
4-Methyl-2-pentanone				<	2.4e-6
Naphthalene				<	8.7e-7

Table B-7. 0031-STRT-2.					
1 able B-7. 0031-31K1-2.	M	ASS FLOW RATE		1	
		ams per second			
Project:		Lab Report Date:	08/20/01		
Run Date:	6/21/2001	Lab Report Status	s: Final		
Run Identification:	0031-STRT-2				
Analyte					n Total
				Flag	g/sec
n-Propylbenzene		144 (844) 114 (84)		<	2.7e-7
Styrene					3.2e-7
1,1,1,2-Tetrachloroethane	÷			<	4.1e-7
1,1,2,2-Tetrachloroethane				<	9.1e-7
Tetrachloroethene					6.2e-7
Toluene				<,J	1.2e-6
1,2,3-Trichlorobenzene				<	8.7e-7
1,2,4-Trichlorobenzene				<	9.1e-7
1,1,1-Trichloroethane				<	7.8e-7
1,1,2-Trichloroethane					7.0e-7
Trichloroethene				<	6.6e-7
Trichlorofluoromethane				<,J	6.6e-7
1,2,3-Trichloropropane				<	9.9e-7
1,2,4-Trimethylbenzene				<	4.1e-7
1,3,5-Trimethylbenzene			****	<	2.4e-7
Vinyl chloride				<,J	5.4e-7
m-Xylene & p-Xylene				<	1.8e-6
o-Xylene				<	3.2e-7
TICs					
Hexane, 2-methyl-				N,J,M	1.2e-6
Pentane, 2,3-dimethyl-				N,J,M	4.5e-7
Hexane, 3-methyl-				N,J,M	1.1e-6
Pentane, 3-ethyl-				N,J,M	1.4e-7
Cyclohexene				N,J,M	7.4e-7
Cyclopentane, 1,2-dimethyl-				N,J,M	2.2e-7
Cyclohexane, methyl-				N,J,M	8.3e-7
Hexane, 2,4-dimethyl-				N,J,M	8.3e-7
Cyclopentane, ethyl-				N,J,M	1.5e-7
Benzonitrile				N,J,M	3.0e-7
Tridecane				N,J,M	3.4e-7
Undecane				N,J,M	9.9e-7
Decane, 2,2,5-trimethyl-				N,J,M	2.5e-7
Undecane, 5-methyl-				N,J,M	8.7e-7
Dodecane				N,J,M	9.1e-5
Dodecane, 6-methyl-				N,J,M	2.1e-7
Undecane, 2,6-dimethyl-				N,J,M	1.9e-7
Tridecane	A		And the state of t	N,J,M	9.9e-6
Tetradecane				N,J,M	4.0e-6
Pentane, 3,3-dimethyl-				,,,,,,	
. S. Kario, Ojo dimoniji					

Table B-8.	0031_FN	JD-2								
1 auto D-0.	005 I-FI	· D · L ·	VOS	ST SAME	LING DAT	A SHEET	<u> </u>			
Site:	HLLWE	Offgas Tie-in	Run No.:	<u> </u>	0031-E		Meter Box N	lo.:		2
Project:	01-1062-		Run Type:		Te		Y-factor:		1.	.005
Date:	21-	Jun-01	Pbar., in. Ho	g:	25.2	10	Operator:		fe	e/rw
VOST Tube		k Check	Sampling		npling	Probe	Condenser	Meter	Meter	Pump
Sample	Rate	@ vacuum	Rate (L/min)	(24 hr)	ime (min.)	Temp.	Temp. (°C)	Temp. (°C)	Volume (L)	Vacuum (in. Hg)
Numbers Set 1	(L/min)	(in. Hg) retest	Target:	13:50		130	14.0	36	0.000	5.0
A-3428	0.003	15	1	13:55	5	130	15.0	36	2.913	5.0
A-3429	0.000			14:00	10	130	15.0	36	5.730	4.5
A-3430		1		14:05	15	130	16.0	36	8.442	4.5
				14:10	20	130	17.0	36	11.143	4.5
				14:15	25	130	14.0	36	13.890	4.5
				14:20	30	130	13.0	37	16.475	4.5
				14:25	35	130	13.0	37	19.112	4.5 4.5
				14:30 14:35	40 45	130 130	12.0 12.0	37 37	21.676 24.121	4.5
	0.000	st-test 15	Total	0:45	45	130	12.0	3/	24.121	Max:
	0.000	13	Average	0.43	73	130	14.1	36	27.12.1	5.0
Set 2	Pi	retest	Target:	14:45	0	130	14.0	37	0	4.7
A-3431	0.003	15	1		5	130	13.0	37	2.884	4.8
A-3432		†	<u> </u>	14:55	10	130	12.0	37	5.986	4.8
A-3433		4		15:00	15	130	13.0	37	8.994	4.8
				15:05	20	130	14.0	37	12.108	4.8
				15:10	25	130	13.0	38	16.982	4.8
		-		15:15	30	130	14.0 13.0	37	18.303 21.394	4.8 4.8
	Π-	at toot		15:20 15:25	35 40	130 130	13.0	37	25.561	4.8
1	0.000	st-test 15	Total	0:40	40	130	13.0	31	25.561	Max:
	0,000	13	Average	0.70	10	130	13.2	37	20.001	4.8
Set 3	Pi	retest	Target:	15:34	0	130	15.0	37	0.000	4.8
A-3434	0.000	15		15:39	5	130	14.0	37	3.251	4.8
A-3435				15:44	10	130	13.0	38	6.003	4.8
A-3436				15:49	15	130	13.0	38	9.136	4.8
				15:54	20	130	14.0	38	11.487	4.8
				15:59	25	130	14.0	38	13.953	4.8 4.8
				16:04 16:09	30 35	130 130	14.0 14.0	38 38	16.616 19.331	4.8
				16:09	40	130	14.0	38	22.039	4.8
	Po	st-test		16:18	44	130	14.0	38	24.214	4.8
	0.006	15	Total	0:44	44				24.214	Max:
			Average			130	13.9	38		4.8
Set 4	Pi	retest	Target:	16:26	0	130	15.0	38	0.000	4.0
A-3437	0.006	15		.16:31	5	130	15.0	38	2.624	4.0
A-3438				16:36	10	130	15.0	38	5.801	4.0
A-3439		<u> </u>		16:41	15	130	15.0	38	8.223	4.0 4.0
]		ļ		16:46 16:51	20 25	130 130	15.0 15.0	39 39	10.998 13.737	4.0
				16:56	30	130	15.0	39	16.501	4.0
				17:01	35	130	15.0	39	19.272	4.0
]				17:06	40	130	15.0	40	22.038	4.0
[st-test		17:10	44	130	15.0	40	24.227	4.0
	0.006	15	Total	0:44	44				24.227	Max:
			Average		•	130	15.0	39		4.0
Condensate				Tenax R	inse:		Rinse:			
A-3440 Final Conder	vento Vale	ımo:		NA Tanay P	inse Vol.:	NA Angeorb	Rinse Vol.:			
=	mL	ime:		300000000000000000000000000000000000000	mL	NA	mL			
<u> </u>	11111				ONAL INP		-,			
	-			Symbol	Units	Set 1	Set 2	Set 3	Set 4	Average
Average Dry	Oxygen C	Concentration	n	Co2	%	20.5		20.5	20.5	20.5
Process Gas F				Qsd	dscm/sec	0.330	0.330	0.330	0.330	0.330
			CALCUL		AMPLING F					
				Symbol	Units	Set 1	Set 2	Set 3	Set 4	Net
	ample Volume @ Standard Conditions mStd=17.647 * Y * Pbar * Vm/(Fm + 460)			VmStd	dsL	19.344	20.452	19.331	19.280	78.406
			n/min	Om	l /min	0.526	0.630	0.550	0.551	0.569
Avg. Actual S Avg. Samplin				Qm QmStd	L/min dsL/min	0.536 0.430	0.639 0.511	0.550		0.569
Avg. Samplin	y Nate, C	anota-villot	u/IIIII	WIIIOU	usL/IIIII	0.430	0.511	0.+39	0.700	0.400

Table B-8. 0031-END-2.					
		ONCENTRATIONS per dry standard cubic	· meter		
Project:	01-1062-01-	Lab Report Date:	08/20/01		
Run Date:	6/21/2001	Lab Report Status:	Final		
Run Identification:	0031-END-2			.,	
Analyte					Total
				Flag	μg/dscr
Acetone				<,J,B	4.8e1
Acrylonitrile				<u> </u>	3.6e1
Benzene				<	2.6e0
Bromobenzene				<	1.5e0
Bromochloromethane				<	1.9e0
Bromodichloromethane				. <	1.5e0
Bromoform				<u> </u>	2.3e0
Bromomethane				J	2.6e0
2-Butanone				<	1.1e1
n-Butylbenzene			A A A A A A	<	1.9e0
sec-Butylbenzene				<	1.1e0
tert-Butylbenzene				<	1.8e0
Carbon disulfide				<	8.2e0
Carbon tetrachloride	-		· · · · · · · · · · · · · · · · · · ·	<,J	2.0e0
Chlorobenzene				<,J	1.2e0
Chlorodibromomethane				<	1.9e0
Chloroethane				<,J	2.0e0
Chloroform				<	5.0e0
Chloromethane				<,J	3.2e1
2-Chlorotoluene			<u> </u>	<	7.5e-1
4-Chlorotoluene				<u> </u>	7.5e-1
1,2-Dibromo-3-chloropropane				<	3.4e0
1,2-Dibromoethane				<	2.6e0
Dibromomethane				<	2.2e0
1,2-Dichlorobenzene				<u> </u>	2.3e0
1,3-Dichlorobenzene				<	1.3e0
1,4-Dichlorobenzene				<	1.8e0
Dichlorodifluoromethane				<,J	2.0e0
1,1-Dichloroethane				<	1.9e0
1,2-Dichloroethane				<	2.0e0
1,1-Dichloroethene				<,J	2.0e0
cis-1,2-Dichloroethene				<	1.9e0
trans-1,2-Dichloroethene				<	2.2e0
1,2-Dichloropropane				<	1.7e0
1,3-Dichloropropane			A SAME OF THE SAME	<	2.2e0
2,2-Dichloropropane				<	2.0e0
1,1-Dichloropropene				<	2.3e0
cis-1,3-Dichloropropene				<	1.7e0
trans-1,3-Dichloropropene				<	1.9e0
Ethylbenzene				<	1.2e0
Hexachlorobutadiene				<	2.9e0
2-Hexanone				<	7.1e0
Isopropylbenzene				<	8.9e-1
p-Isopropyltoluene				<	1.4e0
Methylene chloride				<,J,B	5.5e0

Table B-8. 0031-END-2.					i	
'		NCENTRATIONS	,	'	'	
	micrograms p	er dry standard cub				
Project:		Lab Report Date: Lab Report Status:	08/20/01 Final			
Run Date: Run Identification:	0031-END-2	Lab Report Status.	Fillal			
Analyte	OOOT END 2				Run	Total
					Flag	μ g/dscm
4-Methyl-2-pentanone					<	7.5e0
Naphthalene					<	2.7e0
n-Propylbenzene					<	8.4e-1
Styrene					<	9.9e-1
1,1,1,2-Tetrachloroethane					<	1.3e0
1,1,2,2-Tetrachloroethane			44.4800		<	2.9e0
Tetrachloroethene			V. 12 (12)		<	1.9e0
Toluene					<,J	2.3e0
1,2,3-Trichlorobenzene					<	2.7e0
1,2,4-Trichlorobenzene					<	2.9e0
1,1,1-Trichloroethane					<	2.4e0
1,1,2-Trichloroethane					<	2.2e0
Trichloroethene					<	2.0e0
Trichlorofluoromethane					<,J	2.0e0
1,2,3-Trichloropropane					<	3.1e0
1,2,4-Trimethylbenzene					<	1.3e0
1,3,5-Trimethylbenzene					<	7.5e-1
Vinyl chloride					<,J	2.2e0
m-Xylene & p-Xylene					<	5.6e0
o-Xylene					<,J	9.8e-1
TICs						
Hexane, 2-methyl-					N,J,M	3.1e0
Pentane, 2,3-dimethyl-					N,J,M	1.8e0
Hexane, 3-methyl-					N,J,M	4.3e0
Pentane, 3-ethyl-					N,J,M	4.1e-1
Cyclohexene					N,J,M	3.3e-1
Cyclopentane, 1,2-dimethyl-, t					N,J,M	3.8e-1
Cyclohexane, methyl-					N,J,M	1.5e0
Hexane, 2,4-dimethyl-					N,J,M	1.2e0
Benzonitrile					N,J,M	6.0e-1
Undecane					N,J,M	1.5e0
Undecane, 5-methyl-					N,J,M	2.3e0
Dodecane		MARKET			N,J,M	2.2e2
Undecane, 2,6-dimethyl-					N,J,M	1.1e0
Tridecane					N,J,M	4.0e1
Tetradecane					N,J,M	1.8e1
Cyclopentane, ethyl-						
Pentane, 3,3-dimethyl-						

Table B-8. 0031-END-2.		ASS FLOW RATE			
Project:		Lab Report Date:	08/20/01		
Run Date:	6/21/2001	Lab Report Status:	Final		
Run Identification:	0031-END-2				
Analyte				1	Total
				Flag	g/sec
Acetone				<,J,B	1.6e-5 1.2e-5
Acrylonitrile				 	
Benzene		and an analysis of the second second		<	8.4e-7
Bromobenzene					5.0e-7
Bromochloromethane				<	6.3e-7 5.0e-7
Bromodichloromethane				< <	7.6e-7
Bromoform				J	8.4e-7
Bromomethane				<	3.7e-6
2-Butanone					
n-Butylbenzene			m ratio radio	<	6.3e-7
sec-Butylbenzene				<	3.6e-7 5.9e-7
tert-Butylbenzene				<	
Carbon disulfide			MANAGEMENT TO THE STATE OF THE	<	2.7e-6
Carbon tetrachloride				<,J	6.7e-7
Chlorobenzene				<u> <,J</u>	4.0e-7
Chlorodibromomethane			*	<	6.3e-7
Chloroethane				<,J	6.7e-7
Chloroform				<	1.6e-6
Chloromethane				<,J	1.1e-5
2-Chlorotoluene		.,		<	2.5e-7
4-Chlorotoluene				<	2.5e-7
1,2-Dibromo-3-chloropropane				<	1.1e-6
1,2-Dibromoethane				<	8.4e-7
Dibromomethane				<	7.1e-7
1,2-Dichlorobenzene			A STATE OF A STATE OF THE STATE	<	7.6e-7
1,3-Dichlorobenzene				<	4.2e-7
1,4-Dichlorobenzene				<	5.9e-7
Dichlorodifluoromethane				<,J	6.7e-7
1,1-Dichloroethane				_ <	6.3e-7
1,2-Dichloroethane				<	6.7e-7
1,1-Dichloroethene				<,J	6.7e-7
cis-1,2-Dichloroethene				<	6.3e-7
trans-1,2-Dichloroethene			A CONTRACTOR OF THE PROPERTY O		7.1e-7
1,2-Dichloropropane					5.5e-7
1,3-Dichloropropane				<	7.1e-7
2,2-Dichloropropane					6.7e-7
1,1-Dichloropropene				<u> </u>	7.6e-7
cis-1,3-Dichloropropene				<	5.5e-7
trans-1,3-Dichloropropene					6.3e-7
Ethylbenzene				<	3.9e-7
Hexachlorobutadiene				<u> </u>	9.7e-7
2-Hexanone				<	2.4e-6
Isopropylbenzene		AND TO THE RESIDENCE AND ADDRESS AND ADDRE		<	2.9e-7
p-Isopropyltoluene				<	4.6e-7
Methylene chloride				<,J,B	1.8e-6

Table B-8. 0031-END-2.						
	M.	ASS FLOW RATE		1	,	
		rams per second				
Project:		Lab Report Date:	08/20/01			
Run Date: Run Identification:	6/21/2001 0031-END-2	Lab Report Status:	Final			
Analyte	003 I-LIND-2	1			Run	Total
7				F	Flag	g/sec
4-Methyl-2-pentanone					<	2.5e-6
Naphthalene					<	8.8e-7
n-Propylbenzene					<	2.8e-7
Styrene		A STATE OF THE PARTY OF THE PAR			<	3.3e-7
1,1,1,2-Tetrachloroethane					<	4.2e-7
1,1,2,2-Tetrachloroethane					<	9.7e-7
Tetrachloroethene					<	6.3e-7
Toluene					<,J	7.6e-7
1,2,3-Trichlorobenzene			and the second s		<	8.8e-7
1,2,4-Trichlorobenzene					<	9.7e-7
1,1,1-Trichloroethane					<	8.0e-7
1,1,2-Trichloroethane					<	7.1e-7
Trichloroethene					<	6.7e-7
Trichlorofluoromethane					<,J	6.7e-7
1,2,3-Trichloropropane					<	1.0e-6
1,2,4-Trimethylbenzene					<	4.2e-7
1,3,5-Trimethylbenzene					.	2.5e-7
Vinyl chloride					<,J	7.1e-7
m-Xylene & p-Xylene					<	1.9e-6
o-Xylene					<,J	3.2e-7
TICs						
Hexane, 2-methyl-					,J,M	1.0e-6
Pentane, 2,3-dimethyl-					,J,M	5.9e-7
Hexane, 3-methyl-		-			,J,M	1.4e-6
Pentane, 3-ethyl-		Management (No. 1987) 10. The second			,J <u>,M</u>	1.3e-7
Cyclohexene		***			,J,M	1.1e-7
Cyclopentane, 1,2-dimethyl-, t		~~~			,J,M	1.3e-7
Cyclohexane, methyl-					,J,M	5.0e-7
Hexane, 2,4-dimethyl-					,J,M	4.0e-7
Benzonitrile					,J,M	2.0e-7
Undecane					,J,M	5.0e-7
Undecane, 5-methyl-					,J,M	7.6e-7
Dodecane					J,M	7.1e-5
Undecane, 2,6-dimethyl-					J,M	3.5e-7
Tridecane					J,M	1.3e-5
Tetradecane				N	,J,M	5.9e-6
Cyclopentane, ethyl-		W. W. W. W. W. W. W. W. W. W. W. W. W. W				
Pentane, 3,3-dimethyl-	· · · · · · · · · · · · · · · · · · ·					

Table B-9. 0050-STRT-1.

0050 SAMPLING DATA SHEET FOR HLLWE TESTS

Site.	HIW	HII WE Offgas Tie-in		Samoling	Sampling Location		MAN	J-0FG-73 N	MAN-OFG-73 Nozzle No			1	2-01 Fst AP	0.15 Fet	Fet Tetack °F.	255
Project	-01-	01-1062-01-0866		Duct ID. inches	nches			2	Nozzle Size in	. u		0.3140 Est K	_St K	6.36 Fst	Est vs ft/s:	28.4
Date:		6/7/2001		Static Pre	Static Pressure, in. WG:	WG:		1.0	Pitot No.:			JM-2	JM-2 Est. AH:		erator(s):	FE,JA,RW
Run No.:)	0050-STRT-1		Est. O2, %:	.0:			20.5	Pitot Coeff.:			0.84	Est. DGM 1	0.84 Est. DGM Temperature, °F	L	80
Run Type:		TEST		Est CO2, %	:%			0	Meter Box No.	No.		2	Meter Box	2 Meter Box Leak Checks:		Pitot: PASS
P _{bar.} , in. Hg	ان	25.200		Est. Moist., %:	t., %:			1.3% ∆H@:	ΔH@:			1.5673 Pretest	Pretest	0.010 cfm	m @	15 in. Hg
Tambient, °F:		70		Impinger Box No.:	Box No.:			6	Y-factor:			1.0328			-	Pitot:
DGM vol. Goal (m	soal (m³):	3.00		DGM vol.	Goal (ft ³).			127.080	Min. ending DGM vol. (ft ³):	3 DGM vol.	(ft³):	819.905 Post-test	Post-test	0.010 cfm	m @	11 in. Hg
Sampling	Clock	Velocity		Meter	Actual	Meter			TEMPERATURE (°F)	TURE (°F)			Pump			İ
Time (min.)	Time (24hr)	ΔP (in. WG)		∆H (in. WG)	(in, WG)	Volume (cubic feet)	Probe (if heated)	Stack	Meter	ler Out	Filter	Impinger Exit	Vacuum (in. Hq)	1%	COMI	COMMENTS
0	8:00	0.170	0.412	1.27		692.825	252	133	70	61	258	52	9.1			
10	8:10	0.170	0.412	1.28		699.423	251	134	78	64	258	45	9.2	92		
20	8:20	0.170	0.412	1.29		706.640	250	134	80	29	259	44	9.6	100		
30	8:30	0.160	0.400	1.21		713.400	252	134	81	89	259	44	10.1	96		
40	8:40	0.160	0.400	1.22		720.600	252	134	82	69	258	45	10.1	102		
20	8:50	0.160	0.400	1.22		727.830	253	134	83	70	258	45	10.1	103		
09	9:00	0.160	0.400	1.22		735.060	253	134	84	7.1	259	46	10.1	103		
20	9:10	0.160	0.400	1.22		742.270	249	134	84	72	258	47	10.1	102		
80	9:20	0.160	0.400	1.23		749.510	249	133	85	73	259	47	10.1	102		
06	9:30	0.160	0.400	1.23		756.760	249	133	86	74	258	48	10.1	102		
100	9:40	0.160	0.400	1.23		764.010	249	133	98	74	258	49	10.1	102		
110	9:50	0.160	0.400	1.23		771.270	252	133	88	75	258	49	10.1	102		
120	10:00	0.160	0.400	1.23		778.480	250	133	89	75	258	49	10.1	101		
130	10:10	0.160	0.400	1.23		785.690	251	133	89	77	259	51	10.1	101		
140	10:20	0.160	0.400	1.24		793.120	253	133	06	77	259	51	10.1	104		
150	10:30	0.160	0.400	1.24		800.398	255	133	06	78	258	52	10.1	102	:	
160	10:40	0.160	0.400	1.24		807.695	248	133	91	6/	261	52	10.1	102		
170	10:50	0.160	0.400	1.24		814.890	252	133	91	79	258	53	10.1	101		
180	11:00	0.160	0.400	1.24		822.292	251	133	91	79	258	53	10.1	103		
Total	Total	ΔPavg		Average		Total		Av	Average Temperatures (°F)	oeratures (°F)		Max.	Ave. %I _t		
180	3:00	0.162	0.402	1.24		129.467	251	133	85	73	258	49	10.1	101		

0050 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

							T. C. M. vice T.	ומון אינ. פמון	23.8	Train Vol. Gain	- C C C C C C C C C C C C C C C C C C C	0.0	
			Lo	modified	Silica Gel	300-400g	791.5	766.3	25.2				
			Acid Scrub Section	modified	2N NaOH	200 mL	694.2	709.4	-15.2				13.0
တ				short stem	None	Empty	582.2	566.7	15.5	0	0	0	
			lmp-4	modified	0.1N NaOH	100 mL	680.7	680.7	0.0	100	100	0	13.0
Impinger Box no.:			lmp-3	om	0.1N	100	719.5	720.1	9.0-	100	100	0	12.0
			lmp-2	6-5	0.05M H ₂ SO ₄	100 mL	669.7	667.4	2.3	100	100	0	
as Tie-in			lmp-1		0.05	-	662.0	665.3	-3.3	100	100	0	
HLLWE Offgas Tie-in	6/7/2001	0050-STRT-1	KO-1	short stem	None	Empty	559.8	559.9	-0.1	0	0	0	
Site:	Date: _	Run No.:	Component:	Type:	Reagent:	Nominal Contents:	Post-test Wt., g:	Pre-test Wt., g:	Wt. Gain, g:	Post-test Volume:	Pre-test Volume:	Volume Gain:	Post-test pH:

* used to dilute acid and caustic	*			
DI Water* Lot #: QCLAB-01	NaOH Lot #: QCLAB-381	32060	H ₂ SO ₄ Lot #:	Filter Lot #: T4208E

O2% 20.5 CO2% 0 Record impinger change-out and other important information below:

Table B-9. 0050-STRT-1.

0050 FIELD DATA CALCULATIONS

Project:		2-01-0866	
Run Date: Run Identification:		/2001 STRT-1	
PARAMETER	SYMBOL	UNITS	
Absolute Pressure in the Duct	Pabs	in. Hg	23.913
Average Duct Gas Temperature	Ts	R	593
Average Meter Temperature	Tm	R	539
Average Gas Oxygen Content	Co2,m	%	20.5
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	23.8
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	110.729
Sample Volume (SI)	VmStdm	dscm	3.136
Average Sampling Rate	Qm	dscf/m	0.615
Volume of Water Vapor	VwStd	scf	1.122
Volume of Water Vapor (SI)	VwStdm	scm	0.0318
Moisture Fraction	Bws	•	0.010
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.71
Gas Velocity at Nozzle	vn	ft/s	26.8
Gas Velocity at Nozzle (SI)	vnm	m/s	8.18
Average Gas Velocity	vncor	ft/s	22.64
Dry Offgas Flow Rate	Qsd	dscf/h	45,066
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,276
Actual Offgas Flow Rate	Q	acf/h	64,013
Intermediate Isokinetic Rate	li	%	101.3
Final Isokinetic Rate	I	%	101.0

Table B-9. 0050-STRT-1.

Project: 01-1062-01-0866

Run Date: 6/7/2001 Run Identification: 0050-STRT-1

Run Type:

Lab Report Date: 9/11/2001 Lab Report Status:

Final

TEST

0050 RESULTS

without blank corrections

(preliminary or final)												
		CO	NC	ENTRATION				MA	SS	FLOW RAT	ES	
		Actual		Standard		ry Standard						
		(mg/acm)		(mg/scm)		(mg/dscm)		mg/min		grams/sec		lb/h
Vapor Phase Species:		mg/acm		mg/scm		mg/dscm						
Chloride (as HCl)	В	6.5e-1	В	9.2e-1	В		В	2.0e1	В	3.3e-4	В	2.6e-3
					В	ppmv 6.1e-1						
Chloride (as Cl2)	<	mg/acm 6.5e-2	٧	mg/scm 9.2e-2	<	mg/dscm 9.2e-2 ppmv 3.1e-2	ŀ	2.0e0	<	3.3e-5	٧	2.6e-4
Fluoride	<	mg/acm 9.0e-2	<	mg/scm 1.3e-1		mg/dscm		2.7e0	<	4.5e-5	<	3.6e-4
Nitrate		mg/acm 2.7e0		mg/scm 3.8e0		mg/dscm 3.8e0		8.1e1		1.4e-3		1.1e-2
Nitrite	<	mg/acm 3.6e-1	<	mg/scm 5.1e-1	<	mg/dscm 5.1e-1	<	1.1e1	<	1.8e-4	<	1.4e-3
Total Particulate							В	2.4e1	В	4.0e-4	В	3.1e-3

Table B-10. 0050-END-1.

0050 SAMPLING DATA SHEET FOR HLLWE TESTS

Site.	HI WE	HI I WE Offices Tie.in		Sampling	Sampling Location		MAM	1 OEG 73	MANLOFE 73 Nozzlo No .			2.01	2-04 Est AD	4,0	Co+ T.4 "C.	330
Project:	01-10	01-1062-01-0866		Duct ID, inches:	nches:		Ci	5 5	Nozzle Size in :	E.		0.3140 Fst K	Fst K	6.36	Est ve ft/s	28.5
Date:		6/7/2001		Static Pre	Static Pressure, in. WG:	WG:		2	Pitot No.:			JM-2	JM-2 Est. AH:	$\overline{}$	Operator(s):	FE/RW
Run No.:	0	0050-END-1		Est. O2, %:	.9:			20.5	Pitot Coeff.			0.84	0.84 Est. DGM Temperature, °F	emperatur	e, °F	80
Run Type:		TEST		Est CO2, %:	:%			0	Meter Box No	No.		2	2 Meter Box Leak Checks:	Leak Chec		Pitot: pass
P _{bar.} , in. Hg		25.200		Est. Moist.,	t., %:			1.3%	ΔH@:			1.5673 Pretest	Pretest	0.000	@	.⊑
Tambient, °F:		70		Impinger Box No.:	Box No.:			6	Y-factor:			1.0328				Pitot:
DGM vol. Goal (m³)	oal (m²):	3.00		DGM vol.	DGM vol. Goal (ft³):			127.080	Min. ending DGM vol. (ft³):	DGM vol.	(ft³):	953.478	953.478 Post-test	0.000	cfm @	7.1 in. Hg
Sampling	Clock	Velocity		Meter	Actual	Meter			TEMPERATURE (°F)	TURE (°F)			Pump			
Time (min.)	Time (24hr)	ΔP (in. WG)		ΔH (in. WG)	ΔH (in. WG)	Volume (cubic feet)	Probe (if heated)	Stack	Meter	ja C	Filter	Impinger	Vacuum (in Ho)	, %	COM	COMMENTS
0	14:05	0.150	0.387	1.30		826.398	252	133	95	82	260	49	7.2			
10	14:15	0.150	0.387	1.30		833.490	260	133	97	83	260	52	7.2	101		
20	14:25	0.150	0.387	1.30		840.853	254	133	98	84	263	54	7.2	105		
30	14:35	0.150	0.387	1.30		848.132	253	133	66	85	261	51	7.2	104		
40	14:45	0.150	0.387	1.30		855.329	253	133	66	85	263	53	7.2	103		
20	14:55	0.150	0.387	1.30		862.760	254	133	100	87	260	52	7.2	106		
09	15:05	0.150	0.387	1.30		870.115	255	133	66	87	261	53	7.2	105		
70	15:15	0.150	0.387	1.30		877.700	255	133	66	87	262	53	7.2	108		
80	15:25	0.150	0.387	1.30		884.820	253	133	66	87	261	54	7.2	101		
06	15:35	0.150	0.387	1.30		892.187	251	132	100	87	261	54	7.2	105		
100	15:45	0.150	0.387	1.30		899.530	251	132	100	87	261	55	7.2	104		
110	15:55	0.150	0.387	1.30		906.890	251	132	100	87	261	55	7.2	105		
120	16:05	0.150	0.387	1.30		914.230	252	132	101	88	261	55	7.2	104		
130	16:15	0.150	0.387	1.30		921.580	252	132	101	89	261	55	7.2	104		
140	16:25	0.150	0.387	1.30		928.824	252	133	100	88	260	55	7.2	103		
150	16:35	0.150	0.387	1.30		936.310	253	132	101	89	261	56	7.2	106		
160	16:45	0.150	0.387	1.30		943.673	253	132	101	88	257	52	7.2	104		
170	16:55	0.150	0.387	1.30		951.037	254	133	101	89	259	57	7.2	104		
180	17:05	0.150	0.387	1.30		958.412	254	132	101	89	259	57	7.2	104		
190	17:15	0.150	0.387	1.30		965.768	254	132	100	89	259	57	7.2	104		
195	17:20	0.150	0.387	1.30		969.463	254	132	100	88	260	59	7.1	105	END of TEST	
Total	Total	ΔPavg		Average		Total		Av	Average Temperatures	eratures ((°F)		Max.	Ave. %I,		
195	3:15	0.150	0.387	1.30		143.065	253	133	100	87	261	54	7.2	104		

Table B-10. 0050-END-1.

0050 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

			Acid Scrub Section	modified modified	2N NaOH Silica Gel	200 mL 300-400g	689.8 792.3	693.7 762.0	-3.9 30.3 26.1	(ומו לפי סמו		12.0
				short stem	None	Empty	568.9	564.1	4.8	0.0	0.0	0.0	
6	4		lmp-4	modified	0.1N NaOH	100 mL	702.8	718.2	-15.4	100.0	100.0	0.0	12.0
Impinger Box no.:			lmp-3	pom	0.1N	100	695.4	681.0	14.4	100.0	100.0	0.0	13.0
			lmp-2	·γ.	H ₂ SO ₄	mL .	670.5	668.5	2.0	100.0	100.0	0.0	
HLLWE Offgas Tie-in			lmp-1	S-9	0.05M H ₂ SO ₄	100 mL	660.2	666.5	-6.3	100.0	100.0	0.0	
HLLWE OF	6/7/2001	0050-END-1	KO-1	short stem	None	Empty	560.0	559.8	0.2	NA	NA	0.0	
Site:	Date:	Run No.:	Component:	Type:	Reagent:	Nominal Contents:	Post-test Wt., g:	Pre-test Wt., g:	Wt. Gain, g:	Post-test Volume:	Pre-test Volume:	Volume Gain:	Post-test pH:

* used to dilute acid and caustic DI Water* Lot #: QCLAB1 000381 328060 NaOH Lot # H₂SO₄ Lot #: Filter Lot #: T4208E 20.5 02% CO2%

Record impinger change-out and other important information below:

Table B-10. 0050-END-1.

Project:	01-1062	-01-0866	
Run Date:			
Run Identification: PARAMETER	0050-I SYMBOL		
Absolute Pressure in the Duct	Pabs	in. Hg	23.913
Average Duct Gas Temperature	Ts	R	592
Average Meter Temperature	Tm	R	553
Average Gas Oxygen Content	Co2,m	%	20.5
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	26.1
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	119.218
Sample Volume (SI)	VmStdm	dscm	3.376
Average Sampling Rate	Qm	dscf/m	0.611
Volume of Water Vapor	VwStd	scf	1.231
Volume of Water Vapor (SI)	VwStdm	scm	0.0348
Moisture Fraction	Bws	ı	0.010
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.71
Gas Velocity at Nozzle	vn	ft/s	25.8
Gas Velocity at Nozzle (SI)	vnm	m/s	7.87
Average Gas Velocity	vncor	ft/s	21.80
Dry Offgas Flow Rate	Qsd	dscf/h	43,448
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,230
Actual Offgas Flow Rate	Q	acf/h	61,639
Intermediate Isokinetic Rate	li	%	104.4
Final Isokinetic Rate	I	%	104.1

Table B-10. 0050-END-1.

Project:

01-1062-01-

0866

Run Date:

6/7/2001 Run Identification: 0050-END-1

Run Type:

TEST

Lab Report Date: Lab Report Status: 9/11/2001

(preliminary or final)

Final

0050 RESULTS

• without blank corrections

(preminiary or mar)		CC	N	CENTRATIO	NS	;		M.A	SS	FLOW RAT	ES	
		Actual (mg/acm)		Standard (mg/scm)	D	ry Standard (mg/dscm)		mg/min	ģ	grams/sec		lb/h
Vapor Phase Species:		mg/acm		mg/scm		mg/dscm						
Chloride (as HCl)	В	6.1e-1	В	8.5e-1	B B	8.6e-1 ppmv 5.7e-1		1.8e1	В	2.9e-4	В	2.3e-3
Chloride (as Cl2)	В	mg/acm 1.2e-1	В	mg/scm 1.7e-1	ВВ	mg/dscm 1.7e-1 ppmv 5.7e-2		3.5e0	В	5.8e-5	В	4.6e-4
Fluoride	<	mg/acm 8.4e-2	<	mg/scm 1.2e-1	<	mg/dscm 1.2e-1	<	2.4e0	<	4.0e-5	<	3.2e-4
Nitrate		mg/acm 2.2e0		mg/scm 3.0e0		mg/dscm 3.1e0		6.3e1		1.1e-3		8.4e-3
Nitrite	<	mg/acm 7.9e-1	<	mg/scm 1.1e0	<	mg/dscm 1.1e0	<	2.3e1	<	3.8e-4	<	3.1e-3
Total Particulate							В	1.8e1	В	2.9e-4	В	2.3e-3

Table B-11. 0050-STRT-2.

0050 SAMPLING DATA SHEET FOR HLLWE TESTS

12 Nozzle Size, in.: 0.3140 Est. K: 7.66 Est. v _s , fts: -17.5 Pitot No.: 20.5 Pitot Coeff: 0.84 Est. DGM Temperature, °F 0 Meter Box No. 1 Pitot Leak Check: pass X fail 1.3% ∆H@: 1.573 Meter Box Leak Check: pass X fail 1.3% ∆H@: 1.573 Meter Box Leak Check: pass X fail 1.3% ∆H@: 1.573 Meter Box Leak Check: pass X fail 1.3% ∆H@: 1.573 Meter Box Leak Check: pass X fail 1.3% ∆H@: 1.573 Meter Box Leak Check: pass X fail 1.3% ∆H@: 1.573 Meter Box Leak Check: pass X fail 1.3% ∆H@: 1.573 Meter Box Leak Check: pass X fail 1.57.080 Min. ending DGM vol. (ff): 1096.725 Post-test 0.005 cfm @ 7.5 in. Hg time: Probe Meter Poto Post Check: pass X fail 1.57.080 Min. ending DGM vol. (ff): 1096.725 Post-test 0.005 cfm @ 7.5 in. Hg time: Probe Meter Poto Post Check: pass X fail 1.57.080 Min. ending DGM vol. (ff): 1096.725 Post-test 0.005 cfm @ 7.5 in. Hg time: Probe Meter Poto Post Check: pass X fail 1.57.080 Min. ending DGM vol. (ff): 1096.725 Post-test 0.005 cfm @ 7.5 in. Hg time: Probe Meter Poto Post Check: pass X fail 1.57.080 Min. ending DGM vol. (ff): 1096.725 Post-test 0.005 cfm @ 7.5 in. Hg time: Probe Meter Post Post Check: pass X fail 1.57.080 Min. ending DGM vol. (ff): 1096.725 Post-test 0.005 cfm @ 7.5 in. Hg time: Probe Meter Post Post Check: pass X fail 1.57.080 Min. ending DGM vol. (ff): 1096.725 Post-test 0.005 cfm @ 7.5 in. Hg time: Post Post Check: pass X fail
17.5 Pitot No.: 20.5 Pitot Coeff.: 0.84 Est. DGM Temperature, °F. 0 Meter Box No. 1.3% ∆H@: 1.3% ∆H@: 1.27.080 Min. ending DGM vol. (ff): 128.080 Min. ending DGM vol. (ff): 128.080 Min. ending DGM vol. (ff): 128.080 Min. end
0.84 Est. DGM Temperature, °F 1 Pitot Leak Check: pass X 1.5673 Meter Box Leak Checks: 1.0328 Pretest 0.005 cfm @ 1 1096.725 Post-test 0.000 cfm @ Pump Pump Pump Pump Pump Pump Pump Pump
1.5673 Meter Box Leak Check: pass X 1.5673 Meter Box Leak Checks: 1.0328 Pretest 0.005 ofm @ 1 1096.725 Post-test 0.000 ofm @ Pump Pump Pump Pump Pump Pump Pump Pump
1.5673 Meter Box Leak Checks: 1.0328 Pretest 0.005 ofm @ 1 1096.725 Post-test 0.000 ofm @ Pump Pump Pump %u, (in. Hg) 7.5.
1.0328 Pretest 0.005 ofm @ 1 1096.725 Post-test 0.000 ofm @ Pump Pump %4, [in. Hg) Pump %4, [in. Hg)
1096.725 Post-test 0.000 cfm @ Pump Pump %l, test (in. Hg)
TEMPERATURE (*F) Pump Pump Meler Impinger Vacuum In Out Filter Exit (in. Hg) Filter Exit Filter Exit Filter Exit Filter Exit Filter Exit Filter Exit Filter Exit Filter Exit Filter Filter Exit Filter Exit Filter Filter Exit Filter Filter Exit Filter Exit Filter Exit Filter Filter Exit Filter Filtr Filter Filtr Filter Fil
Meter
63 50 250 51
53 53
133 64 60 259 58 7.5 107
133 74 62 259 48 7.5 97
133 79 63 259 48 7.5 104
133 78 66 260 50 7.5 100
133 78 68 260 52 7.5 114 Shut down train, operations is having
133 76 69 262 51 7.5 instrumentation problems
133 86 71 261 47 7.5 113 Restart train at 0920
133 87 73 261 51 7.5 94
133 88 74 262 53 7.5 136
133 88 75 261 54 7.5 75
133 89 76 260 54 7.5 105
133 90 77 260 55 7.5 105
133 90 77 262 55 7.5 105
133 90 77 262 55 7.5 110
133 92 79 261 56 7.5 101
133 92 79 262 56 7.5 105
133 92 80 260 56 7.5 106
133 92 80 260 57 7.5 106
261 57 7.5
Average Temperatures (°F) Ave. %I
133 84 72 261 53 7.5 104

0050 CONFIGURATION TRAIN COMPONENT DATA SHEET

for HLLWE OFFGAS SAMPLING

Site		HLLWE Offgas Tie-in		Impinger Box no					
Date:	6/11/2001								
Run No.:	0050-STRT-2								
Component:	KO-1	lmp-1	lmp-2	lmp-3	lmp-4		Acid Scrub Section		
Туре:	short stem	9	6-8	pow	modified	short stem	modified	modified	
Reagent:	None	0.05M	0.05M H ₂ SO ₄	0.1N	0.1N NaOH	None	2N NaOH	Silica Gel	
Nominal Contents:	Empty	100	100 mL	100	100 mL	Empty	200 mL	300-400g	
Post-test Wt., g:	571.9	725.0	677.4	698.2	711.1	571.5	706.2	807.5	Train W/+ Gain
Pre-test Wt., g:	571.8	730.6	671.9	€'669	712.9	586.1	706.1	0'082	ilalii vyt. Oalii
Wt. Gain, g:	0.1	-5.6	5.5	-1.1	1.8	-14.6	0.1	27.5	10.1
Post-test Volume:	0.0	100.0	100.0	100.0	100.0	0.0			ries IoV dierT
Pre-test Volume:	0.0	100.0	100.0	100.0	100.0	0.0			1 ail 70. Can
Volume Gain:	0.0	0.0	0.0	0.0	0.0	0.0			0.0
Post-test pH:				13.0	13.0		14.0		2.2.2.2

* used to dilute acid and caustic DI Water* Lot #: QCLAB-1 328060 H₂SO₄ Lot #: Filter Lot #: T4208E

> O2% 20.5 CO2% 0

Record impinger change-out and other important information below:

Table B-11. 0050-STRT-2.

Project:	01-1062	-01-0866	
Run Date:			
Run Identification: PARAMETER	0050-S SYMBOL		
Absolute Pressure in the Duct	Pabs	in. Hg	23.722
Average Duct Gas Temperature	Ts	R	593
Average Meter Temperature	Tm	R	538
Average Gas Oxygen Content	Co2,m	%	20.5
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	10.1
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	110.880
Sample Volume (SI)	VmStdm	dscm	3.140
Average Sampling Rate	Qm	dscf/m	0.609
Volume of Water Vapor	VwStd	scf	0.476
Volume of Water Vapor (SI)	VwStdm	scm	0.0135
Moisture Fraction	Bws	•	0.004
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.77
Gas Velocity at Nozzle	vn	ft/s	25.9
Gas Velocity at Nozzle (SI)	vnm	m/s	7.90
Average Gas Velocity	vncor	ft/s	21.87
Dry Offgas Flow Rate	Qsd	dscf/h	43,468
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,231
Actual Offgas Flow Rate	Q	acf/h	61,842
Intermediate Isokinetic Rate	li	%	104.6
Final Isokinetic Rate	I _	%	103.7

Table B-11. 0050-STRT-2.

Project: 01-1062-01-

0866

Run Date: 6/11/2001

Run Identification: 0050-STRT-2 Run Type:

TEST 9/11/2001

Lab Report Date: Lab Report Status:

Final

0050 RESULTS

• without blank corrections

(preliminary or final)												
		CC)NC	CENTRATIO				MA	SS	FLOW RAT	ES	
	Г	Actual		Standard	D	ry Standard						
		(mg/acm)		(mg/scm)		(mg/dscm)		mg/min	Ç	grams/sec		lb/h
Vapor Phase Species:		mg/acm		mg/scm		mg/dscm						
Chloride (as HCl)	В	6.5e-1	В	9.2e-1	В	9.2e-1 ppmv 6.1e-1	В	1.9e1	В	3.2e-4	В	2.5e-3
Chloride (as Cl2)	<	mg/acm 6.3e-2	٧	mg/scm 8.9e-2	< <	mg/dscm 8.9e-2 ppmv 3.0e-2		1.8e0	<	3.0e-5	<	2.4e-4
Fluoride	<	mg/acm 8.5e-2	<	mg/scm 1.2e-1	<	mg/dscm 1.2e-1	<	2.5e0	<	4.1e-5	<	3.3e-4
Nitrate		mg/acm 1.9e0		mg/scm 2.7e0		mg/dscm 2.7e0		5.6e1		9.4e-4		7.4e-3
Nitrite	<	mg/acm 3.6e-1	<	mg/scm 5.1e-1	<	mg/dscm 5.1e-1	<	1.0e1	<	1.7e-4	<	1.4e-3
Total Particulate				-				7.2e0		1.2e-4		9.5e-4

Table B-12. 0050-END-2.

0050 SAMPLING DATA SHEET FOR HLLWE TESTS

					;				٠١							
Site:	HLLWE C	HLLWE Offgas Tie-in		Sampling	Sampling Location:		MAN-C	DFG-731	MAN-OFG-73 Nozzle No.:			2-01	2-01 Est. AP:	0.15	Est. Tstack, °F:	133
Project:	01-10	01-1062-01-0866		Duct ID, inches:	inches:			12	Nozzle Size, in.	, in.:		0.3140 Est. K:	Est. K:	7.66	Est. vs, ft/s:	26.0
Date:		6/11/2001		Static Pro	Static Pressure, in. WG:	WG:		-17.5 F	Pitot No.:			JM-2	JM-2 Est. AH:	1.15	Operator(s):	FE/RW
Run No.:	0	0050-END-2		Est. O2, %:	:%:	į		20.5 F	Pitot Coeff.:	, ,		0.84	0.84 Est. DGM Temperature,	emperature, °F		80
Run Type:		TEST		Est CO2, %:	:%			0	Meter Box No.	No.		-	1 Pitot Leak Check:	pass	X fail	PASS
P _{bar.} , in. Hg	J.	24.975		Est. Moist., %:	it., %:			1.3% AH@:	3H@:			1.5673	Meter Box	1 5673 Meter Box Leak Checks:		
Tambient, °F:		70		Impinger	Impinger Box No			6	Y-factor:			1.0328 Pretest		0.004 cfm @	15.0 in. Hg time:	13:45
DGM vol. Goal (m³)	Soal (m³):	3.00		DGM vol	Goal (ft)		<u> </u>	127.080	Min. ending DGM vol. (ff):	DGM vol.	(ff):	228.239 Post-test		0 cfm @	8.7 in. Hg time:	17:35
Sampling	Clock	Velocity		Meter	Actual	Meter			TEMPERATURE (°F)	'URE (°F)			Pump			
Time	Time	ΔР		H∇	₽	Volume	Probe	4	Meter	1 :		Impinger	Vacuum	, 1%	COMMENTS	
(min.)	(24hr)	(in. WG)		(in. WG)	(in, WG)	(cubic feet)	(if heated)	Stack	E	Ont	Filter	Exit	(in. Hg)			
0	14:30	0.150	0.387	1.14		101.159	247	133	75	74	260	58	8.2			·
10	14:40	0.150	0.387	1.15	·	108.120	248	133	82	75	260	90	8.2	101		
20	14:50	0.150	0.387	1.15		115.120	247	133	86	76	259	52	8.2	101		
30	15:00	0.150	0.387	1.16		122.090	248	132	88	77	259	53	8.2	101		
40	15:10	0.150	0.387	1.16		129.086	248	133	90	78	260	54	8.2	101		
20	15:20	0.150	0.387	1.16		136.050	247	132	91	79	259	54	8.2	100		
09	15:30	0.150	0.387	1.17		143.060	247	132	92	80	260	55	8.2	100		
70	15:40	0.150	0.387	1.17		150.050	247	132	92	81	260	55	8.2	100		
80	15:50	0.150	0.387	1.17		157.070	247	132	93	81	259	55	8.2	100		
06	16:00	0.150	0.387	1.17		164.270	247	132	92	81	261	56	8.5	103		
100	16:10	0.150	0.387	1.17		171.589	247	132	93	81	259	22	8.5	105		
110	16:20	0.150	0.387	1.17		178.920	247	132	93	81	260	57	8.7	105		
120	16:30	0.150	0.387	1.17		186.231	247	132	93	82	260	57	8.7	104		
130	16:40	0.150	0.387	1.17		193.623	247	132	93	82	259	58	8.7	106		
140	16:50	0.150	0.387	1.17		201.132	247	132	93	82	259	58	8.7	107		
150	17:00	0.150	0.387	1.17		208.340	247	132	93	82	258	58	8.7	103		
160	17:10	0.150	0.387	1.17		215.732	247	132	93	82	258	58	8.7	106		
170	17:20	0.150	0.387	1.17		222.973	247	132	92	81	260	59	8.7	104	:	
180	17:30	0.150	0.387	1.17		230.321	247	132	92	81	260	59	8,7	105		
Total	Total	ΔPavg		Average		Total		Ave	Average Temperatures (°F	eratures (°F)		Max.	Ave. %1,		
180	3:00	0.150	0.387	1.16		129.162	247	132	90	80	259	99	8.7	103	:	

Table B-12. 0050-END-2.

0050 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site		HLLWE Offgas Tie-in		Impinger Box no∷	O				
Date:	6/11/2001								
Run No.:	: 0050-END-2								
Component:	KO-1	lmp-1	lmp-2	lmp-3	lmp-4		Acid Scrub Section		
Type:	short stem	Ó	G-S	modified	ified	short stem	modified	modified	
Reagent:	None	M20.0	0.05M H ₂ SO ₄	0.1N NaOH	чаОН	None	2N NaOH	Silica Gel	
Nominal Contents:	Empty	100	100 mL	100 mL	mL	Empty	200 mL	300-400g	
Post-test Wt., g:	564.0	6'859	668.3	682.5	719.7	592.5	717.3	816.8	Train We
Pre-test Wt., g:	563.9	664.4	8.999	681.7	718.6	589.5	720.0	787.6	I dill Wt. Call
Wt. Gain, g:	0.1	5.5-	1.5	8.0	1:1	3.0	-2.7	29.2	27.5
Post-test Volume:	0.0	100.0	100.0	100.0	100.0	0.0			Toy cies
Pre-test Volume:	0.0	100.0	100.0	100.0	100.0	0.0			Hairi Vol. Gairi
Volume Gain:	0.0	0.0	0.0	0.0	0.0	0.0			0.0
Post-test pH:				13.0	13.0		14.0		

DI Water* Lot #: QCLAB1	* used to dilute acid and caustic		
NaOH Lot3: 000381			
328060			
H ₂ SO ₄ Lot #:			
Filter Lot #: T408E		20.5	0
		02%	CO2%

Record impinger change-out and other important information below:

Table B-12. 0050-END-2.

Project:	01-1062	-01-0866	
Run Date: Run Identification:		2001 END-2	
PARAMETER	SYMBOL		
Absolute Pressure in the Duct	Pabs	in. Hg	23.688
Average Duct Gas Temperature	Ts	R	592
Average Meter Temperature	Tm	R	545
Average Gas Oxygen Content	Co2,m	%	20.5
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	27.5
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.7854
Sample Volume	VmStd	dscf	108.235
Sample Volume (SI)	VmStdm	dscm	3.065
Average Sampling Rate	Qm	dscf/m	0.601
Volume of Water Vapor	VwStd	scf	1.297
Volume of Water Vapor (SI)	VwStdm	scm	0.0367
Moisture Fraction	Bws		0.012
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.69
Gas Velocity at Nozzle	vn	ft/s	26.0
Gas Velocity at Nozzle (SI)	vnm	m/s	7.91
Average Gas Velocity	vncor	ft/s	21.90
Dry Offgas Flow Rate	Qsd	dscf/h	43,197
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,223
Actual Offgas Flow Rate	Q	acf/h	61,934
Intermediate Isokinetic Rate	li	%	103.1
Final Isokinetic Rate	1	%	103.0

Table B-12. 0050-END-2.

Project: 01-1062-01-

0866

Run Date: 6/11/2001 Run Identification: 0050-END-2

Run Type:

TEST

Lab Report Date:
Lab Report Status:

9/11/2001

0050 RESULTS

without blank corrections

Lab Report Status: (preliminary or final)		Final										
		CC	N	CENTRATIO	vs			MA	SS	FLOW RAT	ES	3
		Actual (mg/acm)		Standard (mg/scm)		ry Standard (mg/dscm)		mg/min		grams/sec		lb/h
Vapor Phase Species: Chloride (as HCI)	В	mg/acm 6.6e-1	В	mg/scm 9.4e-1	ВВ	mg/dscm 9.5e-1 ppmv 6.2e-1	В	1.9e1	В	3.2e-4	В	2.6e-3
Chloride (as Cl2)	<	mg/acm 6.6e-2	٧	mg/scm 9.4e-2	v v	mg/dscm 9.5e-2 ppmv 3.2e-2		1.9e0	<	3.2e-5	٧	2.6e-4
Fluoride	<	mg/acm 8.9e-2	<	mg/scm 1.3e-1	<	mg/dscm 1.3e-1	<	2.6e0	<	4.3e-5	<	3.4e-4
Nitrate		mg/acm 1.6e0		mg/scm 2.3e0		mg/dscm 2.3e0		4.7e1		7.9e-4		6.2e-3
Nitrite	<	mg/acm 7.1e-1	<	mg/scm 1.0e0	<	mg/dscm 1.0e0	<	2.1e1	<	3.4e-4	<	2.7e-3
Total Particulate							В	5.3e0	В	8.9e-5	В	7.0e-4

Table B-13. 0060-STRT-1.

METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS

01-1062-01-0866 Duct ID, inches:								7-0	2-01 Est. AP:	0.17	EST. stack F.	133
00111	66 Duct 1	D, inches:		12	Nozzle Size, in.:	e, in.:		0.3140	Est. K:	7.66	Est. vs, ft/s:	27.6
07/0/0	01 Static	6/5/2001 Static Pressure, in. WG:		-17.5	Pitot No.:			JM-2 Est.	Est. ∆H:	1.30	Operator(s):	RW,FE,JA
0060-STRT-1 Est. O2, %:	⁻-1 Est. C	12, %:		20.5	Pitot Coeff.:			0.84	0.84 Est. DGM Temperature,	Temperatur	.е, °F	80
Test	Est C	Est CO2, %:		0	Meter Box No.	No.		2	Leak Checks	ks:		
25.019		Est. Moist., %:		1.3%	∆H@:			1.5673 Pitot:	Pitot:	Pre-	Pass Post-	Pass
68	Impin	Impinger Box No.:		8	Y-factor:			1.0328	1.0328 DGM Pre:	0.003	0.003 cfm @	21 inHg
DGM vol. Goal (m³) 3.0	DGM	vol. Goal (ft²):		127.1	Min. ending DGM vol. (सि):	g DGM vol	. (ff²):	217.356	217.356 DGM Post:		cfm @	8 inHg
× —	Ĺ				TEMPERATURE (*F.	TURE (°F)			Pump			
Time ΔP (in. WG)	(in. WG)	S) (cubic feet)	Heated	Stack	Meter	ter Out	Filter	Impinger Exit	Vacuum (in. Hg)	%	COMMENTS	SNTS
9:30 0.160	1.30		249	133	72	70	260	61	8.0			
9:40 0.160	1.20	97.240	249	133	80	71	260	53	7.0	66	02=20.5	
9:50 0.160	1.25	5 104.200	252	134	82	71	263	55	7.5	66		
10:00 0.160	1.22	111.220	251	133	84	72	262	57	7.5	66	02=20.5	
10:10 0.160	1.20	118.230	250	133	87	74	260	59	7.5	86	02=20.6	
10:20 0.160	1.20	125.380	249	132	06	77	261	61	7.5	100	02=20.6	
10:30 0.160	1.20	132.315	250	133	88	77	262	58	7.5	97	02=20.6	
10:40 0.160	1.20	139.455	250	133	87	92	261	54	7.5	100	02=20.6	
10:50 0.160	1.20	146.567	250	134	85	74	262	52	7.5	100	02=20.6	
11:00 0.160	1.20	153.653	250	133	81	74	261	52	7.5	100	02=20.6	
11:10 0.160	1.20	0 160.757	250	133	88	9/	262	53	7.5	66	02=20.6	
11:20 0.160	1.20	0 167.850	251	133	90	77	260	54	7.5	66	02=20.6	
11:30 0.160	1.20	0 175.250	248	133	91	79	261	54	7.5	103	02=20.6	
11:40 0.160	1.20	0 182.110	252	133	92	79	260	55	7.5	32	02=20.6	
11:50 0.160	1.20	0 189.255	249	132	93	81	259	57	7.5	66	02=20.6	
12:00 0.160	1.20	196.425	249	133	94	82	261	57	7.5	66	02=20.6	
12:10 0.160	1.20	0 203.600	249	133	91	81	260	56	7.5	100	02=20.6	
12:20 0.160	1.20	210.810	250	133	88	79	261	55	7.5	101	02=20.6	
_	1.20	7	253	133	87	11	260	54	7.5	103	02=20.6	
Total ∆Pavg	Average	ige Total		Av	Average Temperatures		(°F)		Max.	Ave. %I,		
3:00 0.159	1.21		250	133	87	9/	261	56	8.0	66		

Table B-13. 0060-STRT-1.

0060 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site: Date: Run No.:	6/5/2001 6/5/2001 0060-STRT-1 KO-1 Imp-1 short stem modified	gas Tie-in 201 IRT-1 Imp-1 modified		Mercury-Only Mercury-Only modified n	Mercury-Only Section Imp-4 I modified	Section Figure 1.000		Acid Scrub Section m modified r	on modified	
1 1	Empty	100 mL solu	5% FINOS/ 10% H2O2	Empty	200 mL solu	4% KMINO4 / 10% H2SO4 200 mL solution in each	Empty	2N NAOH 100 mL	300-400g	
	571.9	718.1	704.9	618.6	733.6	731.3	590.0	680.5	900.3	Impinger
	572.0	720.9	699.5	616.9	731.8	728.8	589.6	686.4	873.2	wt. gain (g)
	-0.1	-2.8	5.4	1.7	1.8	2.5	0.4	-5.9	27.1	30.1
	0.0	100.0	0.06	0.0	100.0	90.0	0.0			Impinger
	0.0	100.0	100.0	0.0	100.0	100.0	0.0			vol. gain (mL)
	0.0	0.0	-10.0	0.0	0.0	-10.0	0.0			-20.0
				!				14.0		
Filter Lot #	53322		HNO ₃ Lot #	129100		H ₂ SO ₄ Lot #	328060			
DI water* Lot #	QCLab-1		H ₂ O ₂ Lot #	992809		KMnO₄ Lot #	006655			

* used to dilute the other reagents

 $O_2\%$ 20.6 $CO_2\%$ 0.0

Table B-13. 0060-STRT-1.

Project:	01-1062	-01-0866	
Run Date:			
Run Identification: PARAMETER	0060-S SYMBOL		
Absolute Pressure in the Duct	Pabs	in. Hg	23.732
Average Duct Gas Temperature	Ts	R	593
Average Meter Temperature	Tm	R	541
Average Gas Oxygen Content	Co2,m	%	20.6
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	30.1
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.785
Sample Volume	VmStd	dscf	107.88
Sample Volume (SI)	VmStdm	dscm	3.055
Average Sampling Rate	Qm	dscf/m	0.599
Volume of Water Vapor	VwStd	scf	1.419
Volume of Water Vapor (SI)	VwStdm	scm	0.0402
Moisture Fraction	Bws	-	0.013
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.68
Gas Velocity at Nozzle	vn	ft/s	26.8
Gas Velocity at Nozzle (SI)	vnm	m/s	8.16
Average Gas Velocity	vncor	ft/s	22.58
Dry Offgas Flow Rate	Qsd	dscf/h	44,506
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,260
Actual Offgas Flow Rate	Q	acf/h	63,850
Intermediate Isokinetic Rate	li	%	99.6
Final Isokinetic Rate	ı	%	99.6

Table B-13. 0060-STRT-1.

Project: 01-1062-01-0866

Run Date: 6/5/2001

Run Identification: 0060-STRT-1

Run Type: Test
Lab Report Date: 8/28/2001

Lab Report Status: (preliminary or final)

Final

RESULTS

• without blank corrections

(prominiary or mary		CC	NC	ENTRATIO	NS			MA	SS F	LOW RAT	ES	
		Actual		Standard	Dry	Standard						
	()	ug/acm)	(µg/scm)	(μ	g/dscm)		μg/min	gr	ams/sec		lb/h
Aluminum (Al)		3.2e1		4.5e1		4.6e1		9.6e2		1.6e-5		1.3e-4
Antimony (Sb)	В	1.0e0	В	1.5e0	В	1.5e0	В	3.2e1	В	5.3e-7	В	4.2e-6
Arsenic (As)	<,B	3.7e-1	<,B	5.2e-1	<,B	5.2e-1	<,B	1.1e1	<,B	1.8e-7		1.5e-6
Barium (Ba)	В	1.5e0	В	2.2e0	В	2.2e0	В	4.6e1	В	7.7e-7	В	6.1e-6
Beryllium (Be)	<,B	1.5e-1	<,B	2.1e-1	<,B	2.1e-1	<,B	4.5e0	<,B	7.4e-8	<,B	5.9e-7
Cadmium (Cd)	В	1.0e-1	В	1.5e-1	В	1.5e-1	В	3.2e0	В	5.3e-8	В	4.2e-7
Chromium (Cr)		6.8e-1		9.7e-1		9.8e-1		2.1e1		3.4e-7		2.7e-6
Cobalt (Co)	В	6.2e-1	В	8.7e-1	В	8.8e-1	В	1.9e1	В	3.1e-7	В	2.5e-6
Copper (Cu)	В	9.8e-1	В	1.4e0	В	1.4e0	В	3.0e1	В	4.9e-7	В	3.9e-6
Lead (Pb)	<,B	3.0e-1	<,B	4.2e-1	<,B	4.3e-1	<,B	8.9e0	<,B	1.5e-7	<,B	1.2e-6
Manganese (Mn)		4.3e0		6.1e0		6.2e0		1.3e2	l .	2.2e-6		1.7e-5
Mercury (Hg)		2.3e1		3.2e1		3.3e1		6.9e2		1.1e-5		9.1e-5
Nickel (Ni)	В	1.1e0	В	1.6e0	В	1.6e0	В	3.4e1	В	5.7e-7	В	4.5e-6
Selenium (Se)	В	7.3e-1	В	1.0e0	В	1.0e0	В	2.2e1	В	3.7e-7	В	2.9e-6
Silver (Ag)	<	5.9e-1	<	8.4e-1	<	8.5e-1	<	1.8e1	<	3.0e-7	<	2.4e-6
Thallium (Tl)	<	5.7e-1	<	8.1e-1	<	8.2e-1	<	1.7e1	<	2.9e-7	<	2.3e-6
Vanadium (V)	<	6.2e-1	<	8.7e-1	<	8.8e-1	<	1.001	<	3.1e-7		2.5e-6
Zinc (Zn)		1.4e1		2.0e1		2.0e1		4.2e2	<u></u>	7.0e-6		5.5e-5

Table B-13. 0060-STRT-1.

Project: 01-1062-01-0866

Run Date:

6/5/2001

Run Identification: 0060-STRT-1

Run Type: Lab Report Date:

Test 8/28/2001

Lab Report Status:

Final

RESULTS

CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060

(preliminary or final)							_					
		CC	NCE	ENTRATIO	NS_	<u> </u>		MA	<u>ISS F</u>	LOW RAT	ES	
	/	Actual	S	tandard	Dry	Standard	l					
	(μ	ıg/acm)	()	µg/scm)	(µ	g/dscm)		µg/min	gr	ams/sec		lb/h
Aluminum (Al)		3.0e1		4.2e1		4.2e1		8.9e2		1.5e-5		1.2e-4
Antimony (Sb)	В	2.4e-1	В	3.4e-1	В	3.4e-1	В	7.2e0	В	1.2e-7		9.5e-7
Arsenic (As)	<,B	2.0e-1	<,B	2.8e-1	<,B	2.8e-1	<,B	5.9e0		9.9e - 8		7.8e-7
Barium (Ba)	В	4.9e-1	В	6.9e-1	В	7.0e-1	В	1.5e1	В	2.5e-7		1.9e-6
Beryllium (Be)	<,B	1.0e-1	<,B	1.5e-1	<,B	1.5e-1	<,B	3.1e0	<,B	5.2e-8	1 '	4.1e-7
Cadmium (Cd)	В	9.1e - 2	В	1.3e-1	В	1.3e-1	В	2.8e0	В	4.6e-8		3.6e-7
Chromium (Cr)		2.7e-1		3.8e-1		3.8e-1		8.0e0	l .	1.3e-7		1.1e-6
Cobalt (Co)	В	6.2e-1	В	8.7e-1	В	8.8e-1	В	1.9e1	В	3.1e-7		2.5e-6
Copper (Cu)	В	9.9e-1	В	1.4e0	В	1.4e0	В	3.0e1	В	5.0e-7	В	3.9e-6
Lead (Pb)	<,B	2.0e-1	<,B	2.8e-1	<,B	2.8e-1	<,B	6.0e0	<,B	1.0e-7		7.9e-7
Manganese (Mn)		3.9e0		5.6e0	1	5.7e0		1.2e2		2.0e-6		1.6e-5
Mercury (Hg)		2.3e1		3.2e1		3.3e1		6.9e2		1.1e-5		9.1e-5
Nickel (Ni)	В	3.5e-1	В	5.0e-1	В	5.0e-1	В	1.1e1	В	1.8e-7	В	1.4e-6
Selenium (Se)	В	2.3e-11	В	3.2e-11	В	3.3e-11	В	6.9e-10	В	1.1e-17	В	9.1e-17
Silver (Ag)	<	6.0e-1	<	8.4e-1	<	8.5e-1	<	1.8e1	<	3.0e-7	<	2.4e-6
Thallium (TI)	<	5.7e-1	<	8.1e-1	<	8.2e-1	<	1.7e1	<	2.9e-7	<	2.3e-6
Vanadium (V)	<	6.2e-1	<	8.7e-1	<	8.8e-1	<	1.9e1	<	3.1e-7	<	2.5e-6
Zinc (Zn)		1.3e1		1.8e1		1.8e1		3.8e2		6.4e-6		5.1e-5

Table B-14. 0060-END-1.

METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS

1	1, 1, 1	i	֓֞֟֟֞֓֓֓֓֓֓֓֓֓֓֓֓֟֟֟ ֓֞֞֞֞֓֞֓֓֞֓֞֞֓֓֞֓֞֓֞֓֓֞֩֞֩֞֓֓֓֡֓֓֓֡֩֡֓֓֩	יייבייייי שליייייייייייייייייייייייייייי				ן נו			֡֝֝֝֝֝֝֜֜֝֝֝֝֜֜֜֜֝֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֡֜֜֡֓֜֜֜֡֓֓֡֓֡֡֡֡֡֓֜֜֡֓֜֡֡֓֜֜֡֡֡֡֡֜֝֡֡֡֡֡֡֓֜֝֡֡֜֝֡֓֜֜֡֡֓֜֜֡֡֓֜֜֡֡֡֡	2	1		
	ILLWE Ungas He-In	as He-In	Sampling Location	Location:	MA	2	Nozzie No.	, .		2-01	2-01 Est. AP:	0.17	ESt. stack, 'F.		133
Project:	01-1062-01-0866	-01-0866	Duct ID, inches	iches:		12	Nozzle Size, in∴	9, in.:		0.3140 Est. K:	Est. K:	7.66	Est. vs, ft/s:		27.6
Date:		6/5/2001	Static Pres	Static Pressure, in. WG:		-17.5	Pitot No.:			JM-2	JM-2 Est. AH:	1.20	Operator(s):	FE,	FE/RW/JA
Run No.:		0060-END-1	Est. O2, %:			20.6	Pitot Coeff.:			0.84	0.84 Est. DGM Temperature, °F	emperatur	ə, ⁰F		80
Run Type:	,,	Test	Est CO2, %:	.%:		0	Meter Box No.	No.		2	2 Leak Checks:	(S:			
Pbar., in. Hg	-Jg:	25.210	Est. Moist., %:	., %:		1.3% AH@:	ΔH@:			1.5673 Pitot:	Pitot:	Pre-	Pass Post-		Pass
Tambient, °F.	أن		Impinger Box No.	30x No.:		80	Y-factor:			1.0328	1.0328 DGM Pre:	0.005	cfm @	15	inHg
DGM vol.	DGM vol. Goal (m³)	3.0	DGM vol. Goal (ft ³)	Goal (ft³):		127.1	Min. endinç	Min. ending DGM vol. (ft 3):	(ft³):	403.758	403.758 DGM Post:	0.000	cfm @	9	inHg
Sampling	ľ	Velocity	Meter	Meter			TEMPERATURE ("F.	TURE (°F)			Pump				
Time (min.)	Time (24hr)	∆P (in, WG)	∆H (in. WG)	Volume (cubic feet)	Heated	Stack	Meter	ter	Filter	Impinger	Vacuum	, I%	COMIN	COMMENTS	
0	`	0.160	1.20	276.678	257	133	69	89	264	48	5.0	,			
9	16:10	0.150	1.20	283.441	259	133	82	69	263	4	5.1	66	02=20.6		
20	16:20	0.150	1.20	290.220	259	133	84	72	262	47	5.1	66	02=20.5		
30	16:30	0.150	1.20	297.030	259	133	85	72	262	48	5.1	66			
40	16:40	0.150	1.20	303.900	259	133	85	73	262	49	5.1	100	02=20.5		
20	16:50	0.150	1.20	310.701	259	133	86	73	263	49	5.1	66			
9	17:00	0.150	1.20	317.650	259	133	86	74	263	50	5.1	101	02=20.6		
20	17:10	0.150	1.20	324.560	259	133	87	74	263	50	5.1	101			
80	17:20	0.150	1.20	331.653	259	133	87	74	264	51	5.1	103	02=20.5		
96	17:30	0.150	1.20	338.761	259	133	87	74	263	51	5.1	103			
100	17:40	0.150	1.20	345.873	259	133	98	74	264	52	5.2	104	02=20.6		
110	17:50	0.150	1.20	352.001	259	133	98	74	263	52	5.2	89			
120	18:00	0.150	1.20	360.078	259	133	98	74	263	52	5.2	118	02=20.6		
130	18:10	0.150	1.20	367.189	259	133	87	74	261	52	5.2	104			
140	18:20	0.150	1.20	374.275	259	134	87	74	263	53	5.2	103	02=20.5		
150	18:30	0.150	1.20	381.374	259	134	87	74	264	53	5.2	103			
160	18:40	0.150	1.20	388.481	259	133	87	74	263	53	5.2	103	02=20.5		
170	18:50	0.150	1.20	395.590	259	133	86	74	262	53	5.2	104			
180	19:00	0.150	1.20	402.710	259	133	86	74	264	53	5.2	104	02=20.6		
190	19:10	0.150	1.20	409.800	259	133	86	74	263	53	5.2	103			
200	19:20	0.150	1.20	416.928	259	133	98	74	262	53	5.2	104	02=20.4		
210	19:30	0.150	1.20	442.102	259	133	98	74	263	53	5.2	367	02=20.5		
215	19:35	0.150	1.20	427.542	259	133	86	74	263	53	5.2	-424			
Total	Total	ΔPavg	Average	Total		Ave	srage Temp	Average Temperatures (°F)	F)		Max.	Ave. %l,		ì	
215	3:35	0.150	1.20	150.864	259	133	85	73	263	51	5.2	06			
												ľ			

Table B-14. 0060-END-1.

0060 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site:	Site: HII WE Offices Tie-in	nas Tie-in								
	6/5/2001	001		IMPINGER BOX NO. =	OX NO. =	80				
	2	ND 4								
			•	Merc	Mercury-Only Section	ction				
Component:	KO-1	lmp-1	lmp-2	lmp-3	lmp-4	lmp-5	Aci	Acid Scrub Section	on	
Type:	short stem	modified	S-9	modified	pom	modified	short stem	modified	modified	
Reagent:	None	5% HNO ₃ / 10%	10% H ₂ O ₂	None	4% KMnO ₄ /	4% KMnO ₄ / 10% H ₂ SO ₄	None	2N NaOH	Silica Gel	
Nominal Contents:	Empty	100 mL solu	100 mL solution in each	Empty	200 mL solu	200 mL solution in each	Empty	100 mL	300-400g	
Post-test Wt., g:	572.2	717.8	705.1	617.9	732.4	731.7	590.9	678.0	831.3	Impinger
Pre-test Wt., g:	572.2	720.5	8.007	617.2	7.157	730.6	590.0	680.3	806.3	wt. gain (g)
Wt. Gain, g:	0:0	-2.7	4.3	0.7	2.0	1.1	6.0	-2.3	25.0	27.7
Post-test Volume:	0.0	92.0	102.0	0.0	100.0	100.0	0.0			Impinger
Pre-test Volume:	0.0	100.0	100.0	0.0	100.0	100.0	0.0			vol. gain (mL)
Volume Gain:	0:0	-8.0	2.0	0.0	0.0	0.0	0.0			-6.0
Post-test pH:								14.0		
Filter Lot #	53322		HNO ₃ Lot #	129100		H ₂ SO ₄ Lot #	3280601			
DI water* Lot #	QCLAB-1		H ₂ O ₂ Lot #	992809		KMnO₄ Lot #	006655			

20.5

O₂%_

* used to dilute the other reagents

Table B-14. 0060-END-1.

Project:			
Run Date: Run Identification:	6/5/2 0060-l		
PARAMETER	SYMBOL	UNITS	
Absolute Pressure in the Duct	Pabs	in. Hg	23.923
Average Duct Gas Temperature	Ts	R	593
Average Meter Temperature	Tm	R	539
Average Gas Oxygen Content	Co2,m	%	20.5
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	27.7
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.785
Sample Volume	VmStd	dscf	129.00
Sample Volume (SI)	VmStdm	dscm	3.653
Average Sampling Rate	Qm	dscf/m	0.600
Volume of Water Vapor	VwStd	scf	1.306
Volume of Water Vapor (SI)	VwStdm	scm	0.0370
Moisture Fraction	Bws	-	0.010
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.71
Gas Velocity at Nozzle	vn	ft/s	25.9
Gas Velocity at Nozzle (SI)	vnm	m/s	7.89
Average Gas Velocity	vncor	ft/s	21.84
Dry Offgas Flow Rate	Qsd	dscf/h	43,505
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,232
Actual Offgas Flow Rate	Q	acf/h	61,741
Intermediate Isokinetic Rate	li	%	102.3
Final Isokinetic Rate	ı	%	102.0

Table B-14. 0060-END-1.

Project: ₀₁₋₁₀₆₂₋₀₁₋₀₈₆₆

Run Date:

6/5/2001

Run Identification: 0060-END-1

Run Type:

Test

Lab Report Date: Lab Report Status: 8/28/2001

(preliminary or final)

Final

RESULTS

• without blank corrections

(4.00.00)		CC	ONC	ENTRATIO	NS			MA	SSI	FLOW RAT	ES	
		Actual		Standard	Dry	y Standard						
	(μg/acm)		(µg/scm)	()	ug/dscm)		µg/min	gr	ams/sec		lb/h
Aluminum (Al)		5.2e1		7.3e1		7.4e1		1.5e3		2.5e-5		2.0e-4
Antimony (Sb)	В	9.8e-1	В	1.4e0	В	1.4e0	В	2.9e1	В	4.8e-7	В	3.8e-6
Arsenic (As)	<	3.1e-1	<	4.3e-1	<	4.4e-1	<	9.0e0	<	1.5e-7	<	1.2e-6
Barium (Ba)	В	1.9e0	В	2.7e0	В	2.7e0	В	5.6e1	В	9.4e-7	В	7.4e-6
Beryllium (Be)	<,B	1.3e-1	<,B	1.8e-1	<,B	1.8e-1	<,B	3.7e0	<,B	6.1e-8	<,B	4.8e-7
Cadmium (Cd)	В	1.6e-1	В	2.2e-1	В	2.2e-1	В	4.6e0	В	7.7e-8	В	6.1e-7
Chromium (Cr)		9.1e-1		1.3e0		1.3e0		2.6e1		4.4e-7		3.5e-6
Cobalt (Co)	<	5.2e-1	<	7.3e-1	<	7.4e-1	<	1.5e1	<	2.5e-7	<	2.0e-6
Copper (Cu)	В	6.9e-1	В	9.8e-1	В	9.9e-1	В	2.0e1	В	3.4e-7	В	2.7e-6
Lead (Pb)	В	2.5e-1	В	3.5e-1	В	3.6e-1	В	7.3e0	В	1.2e-7	В	9.7e-7
Manganese (Mn)		4.4e0		6.2e0		6.3e0		1.3e2		2.2e-6		1.7e-5
Mercury (Hg)		2.9e1		4.1e1		4.1e1		8.4e2		1.4e-5	ŀ	1.1e-4
Nickel (Ni)	В	1.2e0	В	1.6e0	В	1.6e0	В	3.4e1	В	5.6e-7	В	4.5e-6
Selenium (Se)	<	4.1e-1	<	5.7e-1	<	5.7e-1	<	1.2e1	<	2.0e - 7	<	1.6e-6
Silver (Ag)	<	5.0e-1	<	7.0e-1	<	7.1e-1	<	1.5e1	<	2.4e-7	<	1.9e-6
Thallium (TI)	<	4.6e-1	<	6.5e-1	<	6.6e-1	<	1.3e1	<	2.2e-7	<	1.8e - 6
Vanadium (V)	<	5.2e-1	<	7.3e-1	<	7.4e-1	<	1.5e1	<	2.5e-7	<	2.0e-6
Zinc (Zn)		2.3e1		3.3e1		3.3e1		6.7e2		1.1e-5		8.9e-5

Table B-14. 0060-END-1.

Project: 01-1062-01-0866

Run Date: Run Identification: 0060-END-1

6/5/2001

Run Type: Lab Report Date:

Test 8/28/2001

Lab Report Status: (preliminary or final)

Final

RESULTS

CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060 • final presentation should be rounded to two significant digits

(preliminary or final)										**		
		CC	<u> NC</u>	ENTRATIO				M.A	<u>SS I</u>	FLOW RAT	ES	
		Actual		Standard	Dr	y Standard						
	()	ug/acm)		(µg/scm)	((µg/dscm)		μg/min	gı	rams/sec		lb/h
Aluminum (Al)		4.9e1		6.9e1		7.0e1		1.4e3		2.4e-5		1.9e-4
Antimony (Sb)	В	3.0e-1	В	4.2e-1	В	4.2e-1	В	8. 7e 0	В	1.4e-7	В	1.1e-6
Arsenic (As)	<	1.7e-1	<	2.3e-1	<	2.4e-1	<	4.8e0	<	8.1e-8		6.4e-7
Barium (Ba)	В	1.1e0	В	1.5e0	В	1.5e0	В	3.1e1	ı	5.2e-7	i	4.1e-6
Beryllium (Be)	<,B	8.7e-2	<,E	3 1.2e-1	<,E	1.2e-1	<,B	2.5e0	<,B	4.2e-8	<,B	
Cadmium (Cd)	В	1.5e-1	В	2.1e-1	В	2.1e-1	В	4.3e0	В	7.1e-8		5.7e-7
Chromium (Cr)		5.5e-1		7.8e-1		7.9e-1		1.6e1		2.7e-7	I	2.1e-6
Cobalt (Co)	<	5.2e-1	<	7.3e-1	<	7.4e-1	<	1.5e1	<	2.5e-7	I	2.0e-6
Copper (Cu)	В	6.9e-1	В	9.8e-1	В	9.9e-1	В	2.0e1	В	3.4e-7	I	2.7e-6
Lead (Pb)	В	1.7e-1	В	2.4e-1	В	2.4e-1	В	4.9e0	В	8.2e-8	В	6.5e-7
Manganese (Mn)		4.2e0		5.9e0		6.0e0		1.2e2		2.0e-6		1.6e-5
Mercury (Hg)		2.9e1		4.1e1		4.1e1		8.4e2		1.4e-5		1.1e-4
Nickel (Ni)	В	4.9e-1	В	6.9e-1	В	7.0e-1	В	1.4e1	В	2.4e-7	В	1.9e-6
Selenium (Se)	<	1.9e-11	<	2.7e-11	<	2.7e-11	<	5.6e-10	<	9.4e-18	<	7.4e-17
Silver (Ag)	<	5.0e-1	<	7.1e-1	<	7.1e-1	<	1.5e1	<	2.4e-7	I	1.9e-6
Thallium (TI)	<	4.6e-1	<	6.5e-1	<	6.6e-1	<	1.3e1	<	2.2e-7	<	1.8e-6
Vanadium (V)	<	5.2e-1	<	7.3e-1	<	7.4e-1	<	1.5e1	<	2.5e-7	<	2.0e-6
Zinc (Zn)		2.2e1		3.1e1		3.1e1		6.4e2		1.1e-5		8.5e-5

Table B-15. 0060-STRT-2.

METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS

HLLWE Offgas Tie-in Sampling Location:	Offgas Tie-in Sampling Location.	Sampling Location	Location			N-OFG-73	MAN-OFG-73 Nozzle No.			2-01	2-01 Est. AP.	0.16	Est. Tstack, °F:	133
	inches:	inches:		12	1,7	_,	Nozzle Size, in.	e, in.:		0.3140	Est. K:	7.67	Est. vs, ft/s:	26.7
6/6/2001 Static Pressure, in. WG: -17.5	ressure, in. WG:	ressure, in. WG:		-17.5	-17.5		Pitot No.:			JM-2	JM-2 Est. AH:	1.23	Operator(s):	RW,FE, JA
0060-STRT-2 Est. O2, %:	%:	%:		20.6	20.6		Pitot Coeff			0.84	0.84 Est. DGM Temperature, °F	emperatur	e, ⁰F	80
Run Type: Test Est CO2, %: 0	Est CO2, %:			0	0		Meter Box No	No.		2	2 Leak Checks:	ks:		
Pbar., in. Hg. 25.219 Est. Moist., %. 1.3%	Est. Moist., %:			1.3	1.3	%	ΔH@:			1.5673 Pitot:	Pitot:	Pre-	PASS Post-	PASS
Tambient, °F; 66 Impinger Box No.: 9	Impinger Box No.:			6	6		Y-factor:			1.0328	1.0328 DGM Pre:	0.001	cfm @	17 inHg
DGM vol. Goal (m³) 3.0 DGM vol. Goal (ft³): 127.1	DGM vol. Goal (ft³):	.:(.:(127.1	127.1	- 1	Min. ending	Min. ending DGM vol. (ft	(£);	554.802	554.802 DGM Post:	0.000	cfm @	6 inHg
Velocity Meter	Meter	L	Meter			1	TEMPERA	TEMPERATURE (°F)			Pump			
ΔP ΔH Volume Heated	ΔH Volume Heated	Volume Heated	Heated					Meter	i	Impinger	Vacuum	i _%	COMMENTS	ENTS
(in. WG) (in. WG) (cubic feet) Line	(in. WG) (cubic feet) Line	(cubic feet) Line	Line	-	Stac	J١	<u> </u>	ont	Filler	Exit	(in. Hg)			
7.51 0.170 1.20 427.722 255 134	1.20 427.722 255	427.722 255	255		134	_	63	53	260	48	5.3			
8:01 0.170 1.30 434.370 261 134	1.30 434.370 261	434.370 261	261		134		74	58	261	45	5.5	94		
8:11 0.170 1.30 441.310 260 134	1.30 441.310 260	441.310 260	260		134		92	62	265	49	5.5	97		
8:21 0.170 1.30 448.280 260 134	1.30 448.280 260	448.280	260		134		77	63	264	49	5.5	97		
8:31 0.170 1.30 455.250 260 134	1.30 455.250 260	455.250 260	260		134		78	64	261	50	5.5	97		
8:41 0.170 1.30 462.210 258 134	1.30 462.210 258	462.210 258	258		134		81	29	261	51	5.5	96		
8:50 0.170 1.30 468.605 258 134	1.30 468.605 258	468.605 258	258		134	_	82	89	263	52	5.5	98	Stopped train because of NWCF	use of NWCF
9:22 0.170 1.30 468.605 255 134	1.30 468.605 255	468.605 255	255		134		78	29	264	53	5.5	#DIV/0i	building evacuation	
9:23 0.170 1.30 469.290 255 134	1.30 469.290 255	469.290 255	255		134	ļ	79	29	264	53	5.5	95	Restart at 0922	
9:33 0.170 1.30 476.420 250 134	1.30 476.420 250	476.420 250	250		134		84	89	262	49	5.5	86	Hood O2=20.5	
9:43 0.170 1.30 483.530 252 134	1.30 483.530 252	483.530 252	252		134		85	69	263	52	5.5	86	Hood O2=20.4	
9.53 0.170 1.30 490.650 257 134	1.30 490.650 257	490.650 257	257		134		85	70	264	53	5.5	86	Hood O2=20.4	
10:03 0.170 1.30 497.800 254 134	1.30 497.800 254	497.800 254	254		134		98	71	262	53	5.5	86	Hood O2=20.5	
10:13 0.170 1.30 504.940 255 134	1.30 504.940 255	504.940 255	255		134	ł	86	72	263	54	5.5	86	Offgas O2=20.5	
10:23 0.170 1.30 512.090 251 134	1.30 512.090 251	512.090 251	251		134	- 1	87	73	262	54	5.5	86	Offgas 02=20.5	
10:33 0.160 1.30 519.430 250 133	1.30 519.430 250	519.430 250	250		133	- 1	88	73	262	55	5.5	103		
10.43 0.160 1.30 527.621 252 133	1.30 527.621 252	527.621 252	252		133		88	74	262	54	5.5	115		
10:53 0.160 1.30 533.730 250 134	1.30 533.730 250	533.730 250	250		134	- 1	88	73	261	55	5.5	98		
11:03 0.160 1.30 540.740 254 134	1.30 540.740 254	540.740 254	254		134		88	75	261	56	5.5	66	Offgas O2=20.5	
11:13 0.160 1.25 548.003 251 133	1.25 548.003 251	548.003 251	251		133	_	88	76	263	56	5.5	102	Offgas O2=20.5	
11:23 0.160 1.25 555.122 253 133	1.25 555.122 253	555.122 253	253		13	္က	88	92	261	56	5.5	100	Offgas O2=20.5	
0.160 1.30 562.328 250	1.30 562.328 250	562.328 250	250			133	90	77	262	57	5.5	101		
Total	Average					۷	Average Temperatures	peratures ((°F)		Max.	Ave. %l,		
3:10 0.167 1.29 134.606 255 13	1.29 134.606 255	134.606 255	255	_	9	134	83	69	262	52	5.5	#DIV/0i		

Table B-15. 0060-STRT-2.

0060 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site:	Site: HLLWE Offgas Tie-in Date: 6/6/2001	fgas Tie-in 2001		IMPINGER BOX NO. =	= ON XOS	თ				
Run No.:	0060-STRT-2	TRT-2								
				Mer	Mercury-Only Section	ction				
Component:	K0-1	lmp-1	Imp-2	lmp-3	1mp-4	g-dwl	Aci	Acid Scrub Section	on	
Type:	short stem	modified	S-9	modified	oow	modified	short stem	modified	modified	
Reagent:	None	5% HNO ₃ / 10%	10% H ₂ O ₂	None	4% KMnO4 /	4% KMnO ₄ / 10% H ₂ SO ₄	None	2N NaOH	Silica Gel	
Nominal Contents:	Empty	100 mL solu	100 mL solution in each	Empty	100 mL solt	100 mL solution in each	Empty	100 mL	300-400g	
Post-test Wt., g:	559.6	723.0	678.4	583.4	739.1	732.5	567.0	9.602	813.0	Impinger
Pre-test Wt., g:	559.6	726.2	674.0	582.4	739.6	733.3	564.3	716.1	785.1	wt. gain (g)
Wt. Gain, g:	0.0	-3.2	4.4	1.0	-0.5	-0.8	2.7	-6.5	27.9	25.0
Post-test Volume:	0.0	100.0	100.0	0.0	100.0	100.0	0.0			Impinger
Pre-test Volume:	0.0	100.0	100.0	0.0	100.0	100.0	0.0			vol. gain (mL)
Volume Gain:	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0
Post-test pH:								14.0		
Filter Lot #	53322		HNO ₃ Lot #	129100		H ₂ SO ₄ Lot #	328060			
DI water* Lot #	dCLAB-1		H ₂ O ₂ Lot #	992809		KMnO ₄ Lot #	006655			

20.5

O₂%_

* used to dilute the other reagents

Table B-15. 0060-STRT-2.

Project:		-01-0866 2001	
Run Date: Run Identification:		200 T STRT-2	
PARAMETER	SYMBOL	UNITS	
Absolute Pressure in the Duct	Pabs	in. Hg	23.932
Average Duct Gas Temperature	Ts	R	593
Average Meter Temperature	Tm	R	536
Average Gas Oxygen Content	Co2,m	%	20.5
Average Gas Carbon Dioxide Content	Cco2,m	%	0.0
Total Impinger Weight Gain (water)	Ww	grams	25.0
Nozzie Area	An	ft²	0.000538
Duct Area	As	ft²	0.785
Sample Volume	VmStd	dscf	115.90
Sample Volume (SI)	VmStdm	dscm	3.282
Average Sampling Rate	Qm	dscf/m	0.610
Volume of Water Vapor	VwStd	scf	1.179
Volume of Water Vapor (SI)	VwStdm	scm	0.0334
Moisture Fraction	Bws	-	0.010
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.71
Gas Velocity at Nozzle	vn	ft/s	27.3
Gas Velocity at Nozzle (SI)	vnm	m/s	8.31
Average Gas Velocity	vncor	ft/s	23.00
Dry Offgas Flow Rate	Qsd	dscf/h	45,790
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,297
Actual Offgas Flow Rate	Q	acf/h	65,037
Intermediate Isokinetic Rate	li	%	98.8
Final Isokinetic Rate	1	%	98.5

Table B-15. 0060-STRT-2.

Project: 01-1062-01-0866

Run Date:

6/6/2001

Run Type: Test

Run Type: Lab Report Date: Test 8/28/2001

Lab Report Status: (preliminary or final)

Final

RESULTS

without blank corrections

(preliminary or final)												.,,		
	CONCENTRATIONS							MASS FLOW RATES						
	Actual		Standard		Dry Standard		l							
	(µg/acm)		(µg/scm)		(µg/dscm)		μg/min		grams/sec		lb/h			
Aluminum (Al)		1.6e1		2.3e1		2.3e1		5.0e2		8.3e-6		6.6e-5		
Antimony (Sb)	В	9.7e-1	В	1.4e0	В	1.4e0	В	3.0e1	В	4.9e-7	В	3.9e-6		
Arsenic (As)	<	3.4e-1	<	4.8e-1	<	4.9e-1	<	1.1e1	<	1.8e-7	<	1.4e-6		
Barium (Ba)	В	1.1e0	В	1.5e0	В	1.6e0	В	3.4e1	В	5.6e-7	В	4.4e-6		
Beryllium (Be)	<,B	1.4e-1	<,B	2.0e-1	<,B	2.0e-1	<,B	4.3e0	<,B	7.1e-8	<,B	5.7e-7		
Cadmium (Cd)	<,B	5.8e-2	<,B	8.1e - 2	<,B	8.2e-2	<,B	1.8e0	<,B	3.0e-8	<,B	2.4e-7		
Chromium (Cr)		5.4e-1		7.5e-1		7.6e-1		1.6e1		2.7e-7	•	2.2e-6		
Cobalt (Co)	<	5.8e-1	<	8.1e-1	<	8.2e-1	<	1.8e1	<	3.0e-7	<	2.4e-6		
Copper (Cu)	В	4.9e-1	В	6.9e-1	В	7.0e-1	В	1.5e1	В	2.5e-7	В	2.0e-6		
Lead (Pb)	<,B	3.0e-1	<,B	4.2e-1	<,B	4.3e-1	<,B	9.2e0	<,B	1.5e-7	<,B	1.2e-6		
Manganese (Mn)		8.2e0		1.1e1		1.2e1		2.5e2		4.2e-6		3.3e-5		
Mercury (Hg)		2.4e1		3.3e1		3.4e1		7.2e2		1.2e-5		9.6e-5		
Nickel (Ni)	В	9.7e-1	В	1.4e0	В	1.4e0	В	3.0e1	В	4.9e-7	В	3.9e-6		
Selenium (Se)	В	5.6e-1	В	7.8e-1	В	7.9e-1	В	1.7e1	В	2.9e-7	В	2.3e-6		
Silver (Ag)	<	5.6e-1	<	7.8e-1	<	7.9e-1	<	1.7e1	<	2.9e-7	<	2.3e-6		
Thallium (TI)	<	5.4e-1	<	7.5e-1	<	7.6e-1	<	1.6e1	<	2.7e-7	<	2.2e-6		
Vanadium (V)	<	5.8e-1	<	8.1e-1	<	8.2e-1	<	1.8e1	<	3.0e-7	<	2.4e-6		
Zinc (Zn)		6.4e0		9.0e0		9.1e0		2.0e2		3.3e-6		2.6e-5		

Table B-15. 0060-STRT-2.

Project: 01-1062-01-0866

Run Date: Run Identification: 0060-STRT-2

6/6/2001

Run Type: Lab Report Date: Lab Report Status:

Test 8/28/2001

Final

RESULTS

CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060 • final presentation should be rounded to two significant digits

(preliminary or final)													
		CC	ONCENTRATIONS				MASS FLOW RATES						
	Actual		Standard		Dry Standard								
	(µg/acm)		(µg/scm)		(µg/dscm)		µg/min		grams/sec		lb/h		
Aluminum (Al)		1.5e1		2.1e1		2.1e1		4.5e2		7.5e-6		6.0e-5	
Antimony (Sb)	В	2.0e-1	В	2.8e-1	В	2.9e-1	В	6.2e0	В	1.0e-7		8.2e-7	
Arsenic (As)	<	1.8e-1	<	2.6e-1	<	2.6e-1	<	5.7e0		9.4e-8		7.5e-7	
Barium (Ba)	В	1.2e-1	В	1.6e-1	В	1.6e-1	В	3.6e0	В	5.9e-8		4.7e-7	
Beryllium (Be)	<,B	9.7e-2	<,B	1.4e-1	<,B	1.4e-1	<,B	3.0e0	<,B	4.9e-8		3.9e-7	
Cadmium (Cd)	<,B	4.5e-2	<,B	6.4e-2	<,B	6.4e-2	<,B	1.4e0	<,B	2.3e-8	<,B	1.8e-7	
Chromium (Cr)		1.4e-1		2.0e-1		2.0e-1		4.4e0	1	7.4e-8	ı	5.8e-7	
Cobalt (Co)	<	5.8e-1	<	8.1e-1	<	8.2e-1	<	1.8e1	ı	3.0e-7	ı	2.4e-6	
Copper (Cu)	В	4.8e-1	В	6.8e-1	В	6.9e-1	В	1.5e1	В	2.5e-7	1	2.0e-6	
Lead (Pb)	<,B	2.1e-1	<,B	3.0e-1	<,B	3.0e-1	<,B	6.5e0		1.1e-7		8.5e-7	
Manganese (Mn)		7.8e0		1.1e1		1.1e1		2.4e2	ı	4.0e-6	ı	3.2e-5	
Mercury (Hg)		2.4e1		3.3e1		3.4e1		7.2e2		1.2e-5	ı	9.6e-5	
Nickel (Ni)	В	2.2e-1	В	3.1e-1	В	3.2e-1	В	6.8e0		1.1e-7	В	9.1e-7	
Selenium (Se)	В	2.1e-11	В	3.0e-11	В	3.0e-11	В	6.6e-10	В	1.1e-17	В	8.7e-17	
Silver (Ag)	<	5.6e-1	<	7.9e-1	<	8.0e-1	<	1.7e1	<	2.9e-7	ı	2.3e-6	
Thallium (TI)	<	5.4e-1	<	7.5e-1	<	7.6e-1	<	1.6e1		2.7e-7	<	2.2e-6	
Vanadium (V)	<	5.8e-1	<	8.1e-1	<	8.2e-1	<	1.8e1	<	3.0e-7		2.4e-6	
Zinc (Zn)		5.6e0		7.8e0	<u> </u>	7.9e0		1.7e2		2.8e-6		2.3e-5	

Table B-16. 0060-END-2.

METHOD 0060 SAMPLING DATA SHEET FOR HLLWE TESTS

	Duct ID, inches:								•		2
			12	Nozzle Size in	. ui		0.3140 Fst	Fot Y	7 67	Fst vs ft/s	26.7
			-17.5	Pitot No.:			JM-2	JM-2 Est. AH:	1.23	Operator(s):	FE/RW
	12, %:		20.5	Pitot Coeff.	ا		0.84	Est. DGM	Est. DGM Temperature, °F	re, °F	80
	O2, %:		0	Meter Box No	No.		2	Leak Checks:	cks:		
	loist., %:		1.3%	VH@:			1.5673 Pitot	Pitot:	Pre-	Pass Post-	Pass
			8	Y-factor:			1.0328	1.0328 DGM Pre:	0.000 cfm	cfm @ 15.5	inHg
	DGM vol. Goal (ft'):		127.1	Min. endin	Min. ending DGM vol. (ft):	. (ff):	690.106	690.106 DGM Post	t: 0.000	튱	
				TEMPERA	TEMPERATURE (°F)			Pump	à		
	Volume G) (cubic feet)	Heated Line	Stack	Meter	ster Out	Filter	Impinger Exit	Vacuum (in. Hg)	, 10%	COMMENIS	v.
	5 563.026	248	133	82	75	257	25	5.2			
0.150 1.25		248	133	87	92	259	55	5.2	100		
0.150 1.25	5 576.880	250	133	90	78	260	55	5.2	101	02=20.5	į
0.150 1.25	583.890	249	133	91	79	260	55	5.2	101	02=20.5	
0.150 1.20	290.900	251	133	92	79	259	55	5.2	101	02=20.5	
0.150 1.20	597.920	250	133	93	80	261	55	5.2	101	02=20.5	
0.150 1.20	0 604.930	250	133	93	80	261	55	5.2	101	02=20.5	
0.150 1.20	0 611.920	254	133	93	81	260	56	5.2	100	02=20.4	
0.150 1.20	0 618.940	254	133	93	81	260	57	5.2	101	02=20.5	
0.150 1.20	0 625.950	256	133	93	81	260	57	5.2	101	02=20.4	
0.150 1.20	0 632.960	256	133	93	81	260	58	5.2	101	02=20.5	
0.150 1.20	0 639.960	256	133	93	81	260	58	5.2	101	02=20.4	
0.150 1.20	0 646.980	255	133	93	81	261	59	5.2	101	02=20.4	
0.150 1.20	0 654.010	256	133	93	8	261	59	5.2	101	02=20.4	
0.150 1.20	0 661.020	255	133	93	81	259	90	5.2	101	02=20.4	
0.150 1.20	090:899	255	133	93	81	260	60	5.2	101	02=20.5	
0.150 1.20	0 675.060	255	133	93	81	260	61	5.2	101	02=20.4	
0.150 1.20	0 682.070	255	133	93	84	260	61	5.2	101	02=20.4	
0.150 1.30	0 689.520	255	133	93	81	260	61	5.5	107	02=20.5	
0.150 1.30		255	133	93	81	260	61	5.5	110	02=20.4	
∆Pavg Average	age Total		Α	Average Temperatures (°F	peratures	(°F)		Max.	Ave. %t		
0.150 1.22	128.024	253	133	92	80	260	58	5.5	102		

Table B-16. 0060-END-2.

0060 CONFIGURATION TRAIN COMPONENT DATA SHEET for HLLWE OFFGAS SAMPLING

Site: _	Site: HLLWE Offgas Tie-in	fgas Tie-in								
Date:	6/6/2001	2001		IMPINGER BOX NO. =	OX NO. =	8				
Run No.:	0060-END-2	END-2								
				Merc	Mercury-Only Section	ction				
Component:	KO-1	lmp-1	lmp-2	lmp-3	lmp-4	lmp-5	Aci	Acid Scrub Section	on	
Type:	short stem	modified	6-8	modified	pou	modified	short stem	modified	modified	
Reagent:	None	5% HNO ₃ / 10% H ₂ O ₂	10% H ₂ O ₂	None	4% KMnO4 /	4% KMnO ₄ / 10% H ₂ SO ₄	None	2N NaOH	Silica Gel	
Nominal Contents:	Empty	100 mL solution in each	Ition in each	Empty	200 mL solu	200 mL solution in each	Empty	100 mL	300-400g	
Post-test Wt., g:	572.2	720.7	682.1	618.4	734.6	718.7	8.809	691.6	781.0	Impinger
Pre-test Wt., g:	573.2	727.9	677.4	618.6	734.9	719.0	607.3	694.7	754.2	wt. gain (g)
Wt. Gain, g:	-1.0	-7.2	4.7	-0.2	-0.3	-0.3	1.5	-3.1	26.8	20.9
Post-test Volume:	0.0	100.0	100.0	0.0	100.0	100.0	0.0			Impinger
Pre-test Volume:	0.0	100.0	100.0	0.0	100.0	100.0	0.0			vol. gain (mL)
Volume Gain:	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0
Post-test pH:								13.0		
Filter Lot #	53322		HNO ₃ Lot #	129100		H ₂ SO ₄ Lot #	328060			
DI water* Lot #	QCLAB1		H ₂ O ₂ Lot #	992809		KMnO ₄ Lot #	06655			

^{*} used to dilute the other reagents

20.5	0.0
0 ⁵ %	CO ₂ %

Table B-16. 0060-END-2.

FIELD DATA CALCULATIONS

Project:	01-1062	-01-0866	
Run Date:			
Run Identification: PARAMETER	SYMBOL	END-2 UNITS	<u> </u>
Absolute Pressure in the Duct	Pabs	in. Hg	23.905
Average Duct Gas Temperature	Ts	R	593
Average Meter Temperature	Tm	R	546
Average Gas Oxygen Content	Co2,m	%	20.5
	·	% %	0.0
Average Gas Carbon Dioxide Content	Cco2,m		
Total Impinger Weight Gain (water)	Ww	grams	20.9
Nozzle Area	An	ft²	0.000538
Duct Area	As	ft²	0.785
Sample Volume	VmStd	dscf	108.05
Sample Volume (SI)	VmStdm	dscm	3.060
Average Sampling Rate	Qm	dscf/m	0.594
Volume of Water Vapor	VwStd	scf	0.985
Volume of Water Vapor (SI)	VwStdm	scm	0.0279
Moisture Fraction	Bws	-	0.009
Dry Gas Molecular Weight	Md	g/g-mol	28.82
Wet Gas Molecular Weight	Ms	g/g-mol	28.72
Gas Velocity at Nozzle	vn	ft/s	25.8
Gas Velocity at Nozzle (SI)	vnm	m/s	7.88
Average Gas Velocity	vncor	ft/s	21.81
Dry Offgas Flow Rate	Qsd	dscf/h	43,465
Dry Offgas Flow Rate (SI)	Qsdm	dscm/h	1,231
Actual Offgas Flow Rate	Q	acf/h	61,660
Intermediate Isokinetic Rate	li	%	101.4
Final Isokinetic Rate	l	%	101.0

Table B-16. 0060-END-2.

Project: 01-1062-01-0866

Run Date:

6/6/2001

Run Type:

Run Identification: 0060-END-2 Test

Lab Report Date: Lab Report Status: 8/28/2001

(preliminary or final)

Final

RESULTS

• without blank corrections

• final presentation should be rounded to two significant digits

(preminary or imar)			<u> </u>								_	
		CC	DNC	ENTRATIO	NS			MA	SS	FLOW RAT	ES	
		Actual	,	Standard	Dry	Standard	l					
	l!	(µg/acm)		(µg/scm)	()	ıg/dscm)		μg/min	gı	rams/sec		lb/h
Aluminum (AI)		1.7e1		2.4e1		2.4e1		4.9e2		8.2e-6		6.5e-5
Antimony (Sb)	В	9.4e-1	В	1.3e0	В	1.3e0	В	2.7e1	В	4.6e-7	В	3.6e-6
Arsenic (As)	<	3.7e-1	<	5.2e-1	<	5.2e-1	<	1.1e1	<	1.8e-7	<	1.4e-6
Barium (Ba)	В	1.1e0	В	1.5e0	В	1.5e0	В	3.2e1	В	5.3e-7	В	4.2e-6
Beryllium (Be)	<,B	1.5e-1	<,B	2.1e-1	<,B	2.1e-1	<,B	4.4e0	<,B	7.3e-8	<,B	5.8e-7
Cadmium (Cd)	<	6.2e-2	<	8.7e-2	<	8.8e - 2	<	1.8e0	<	3.0e-8	1	2.4e-7
Chromium (Cr)		1.2e0		1.7e0		1.7e0		3.4e1		5.7e-7		4.5e-6
Cobalt (Co)	<	6.2e-1	<	8.7e-1	<	8.8e-1		1.8e1	<	3.0e-7	ı	2.4e-6
Copper (Cu)	<,B	3.2e-1	<,B	4.5e-1	<,B	4.6e-1	<,B	9.4e0	<,B	1.6e-7	<,B	1.2e-6
Lead (Pb)	<,B	2.8e-1	<,B	3.9e-1	<,B	3.9e-1	<,B	8.0e0	<,B	1.3e-7	<,B	1.1e-6
Manganese (Mn)		1.7e1		2.3e1		2.4e1		4.8e2		8.0e-6		6.4e-5
Mercury (Hg)		2.5e1		3.6e1		3.6e1		7.4e2		1.2e-5		9.8e-5
Nickel (Ni)	В	9.4e-1	В	1.3e0	В	1.3e0	В	2.7e1	В	4.6e-7	В	3.6e-6
Selenium (Se)	В	5.3e-1	В	7.4e-1	В	7.5e-1	В	1.5e1	В	2.6e-7	В	2.0e-6
Silver (Ag)	<	6.0e-1	<	8.4e-1	<	8.5e-1	<	1.7e1	<	2.9e-7	<	2.3e-6
Thallium (TI)	<	5.5e-1	<	7.8e-1	<	7.8e-1	<	1.6e1	<	2.7e-7	1	2.1e-6
Vanadium (V)	<	6.2e-1	<	8.7e-1	<	8.8e-1	<	1.8e1	<	3.0e-7	<	2.4e-6
Zinc (Zn)		3.9e0		5.5e0		5.6e0		1.1e2		1.9e-6		1.5e-5

Table B-16. 0060-END-2.

Project: 01-1062-01-0866

Run Date: 6/6/2001 Run Identification: 0060-END-2

Run Type: Test

Lab Report Date: 8/28/2001
Lab Report Status:

(preliminary or final)

RESULTS

CORRECTED FOR CONTRIBUTION FROM

Corrected for Reagent Blank per EPA SW-846 Test Method 0060 • final presentation should be rounded to two significant digits

(preliminary or final)			<u></u>									
		CC	DNC	ENTRATIO	NS			MA	<u>ISS F</u>	LOW RAT	ES	
	/	Actual	8	Standard	Dry	y Standard	l					
	(µ	g/acm)	(µg/scm)	()	ug/dscm)		μg/min	gr	ams/sec		lb/h
Aluminum (Al)		1.5e1		2.1e1		2.2e1		4.4e2		7.4e-6		5.9e-5
Antimony (Sb)	В	1.2e-1	В	1.7e-1	В	1.8e-1	В	3.6e0	В	6.0e-8	В	4.8e-7
Arsenic (As)	<	2.0e-1	<	2.8e-1	<	2.8e-1	<	5.8e0	<	9.6e-8	<	7.6e-7
Barium (Ba)	В	3.2e-2	В	4.5e-2	В	4.6e-2	В	9. 4e-1	В	1.6e-8	В	1.2e-7
Beryllium (Be)	<,B	1.0e-1	<,B	1.5e-1	<,B	1.5e-1	<,B	3.0e0	<,B	5.0e-8	<,B	4.0e-7
Cadmium (Cd)	<	4.9e-2	<	6.8e-2	<	6.9e-2	<	1.4e0	<	2.4e-8	<	1.9e-7
Chromium (Cr)		7.5e-1		1.1e0		1.1e0		2.2e1		3.7e-7		2.9e-6
Cobalt (Co)	<	6.2e-1	<	8.7e-1	<	8.8e-1	<	1.8e1	<	3.0e-7	<	2.4e-6
Copper (Cu)	<,B	3.2e-1	<,B	4.4e-1	<,B	4.5e-1	<,B	9.2e0	<,B	1.5e-7	<,B	1.2e-6
Lead (Pb)	<,B	1.8e-1	<,B	2.5e-1	<,B	2.5e-1	<,B	5.2e0	<,B	8.6e-8	<,B	6.8e-7
Manganese (Mn)		1.6e1		2.2e1		2.3e1		4.6e2		7.7e-6		6.1e-5
Mercury (Hg)		2.5e1		3.6e1		3.6e1		7.4e2		1.2e-5		9.8e-5
Nickel (Ni)	В	1.5e-1	В	2.1e-1	В	2.1e-1	В	4.3e0	В	7.2e-8	В	5.7e-7
Selenium (Se)	В	2.3e-11	В	3.2e-11	В	3.3e-11	В	6.7e-10	В	1.1e-17	l	8.9e-17
Silver (Ag)	<	6.0e-1	<	8.5e-1	<	8.5e-1	<	1.7e1	<	2.9e-7	<	2.3e-6
Thallium (TI)	<	5.5e-1	<	7.8e-1	<	7.8e-1	<	1.6e1	<	2.7e-7	<	2.1e-6
Vanadium (V)	<	6.2e-1	<	8.7e-1	<	8.8e-1	<	1.8e1	<	3.0e-7	<	2.4e-6
Zinc (Zn)		2.9e0		4.0e0		4.1e0		8.4e1		1.4e-6		1.1e-5

Table B-17. SVOC emission rates	grames per	second cor	nparisor	S.		İ	- 1			L		Ī			ŀ	Ī			
Analyte	Registry	STRT-1 g/s	Flag	Specific	END-1 g/s	Flag	Specific	STRT-2 g/s	- ග් Flag	Specific	END-2 g/s	Flag	Specific	Max value g/s	Flag	Flag 6/s	Results g/s	Specific	Run Avgs
Acenaphthene	83-32-9	1.1e-6	v	z	1.16-6	v	z	1.8e-6	7,	╁	1.96-7	v	z	ľ	c,J 2.0	9-9	1.8e-6	۵	1.4e-6
Acenaphthylene	208-96-8	1.0e-6	v	z	1.0e-6	v	z	1.8e-6	۲.	۵.	9.6e-7	٧	z	'n	2	.0e-6	1.8e-6	۵	1.4e-6
Acetophenone	98-86-2	5.46-6	Ž. 1	<u>م</u> ء	3.9e-6	ν, .	۵.	4.8e-6	₹,		. 8e-6	3,	۵.	5.4e-6 <	0.0	9 1	5.4e-6	a.	5.16-6
Anthracene	120-12-7	1.06-6	v	z	1.0e-6	, ,	z	1.8e-6	/ 7	2 0	. Be-7	/ v	. z	1.89-6	2.0	99	1.8e-6	2 0	46-6
Benzidine	92-87-5	7.3e-5	v	z	7.2e-5	v	z	9.1e-5	· v	z	6.8e-5		z	9.16-5	9.7		9.16-5	z	8.2e-5
Benzoic acid	65-85-0	5.4e-4	w v	<u>م</u> 2	2.8e.4	шν	ΔZ	2.6e-4	ш ,	<u>п</u> 0	.7e4	ш	Δz	5.464	9.0	4 4	5.4e4	م م	4.0e-4
Benzo(a)pyrene	50-32-8	1.4e-5	v	z	1.4e-5	V	z	1.68-5	17		36-5	, ,	z	1.6e-5	1	:	1.6e-5	. a.	1.56-5
Benzo(b)fluoranthene	205-99-2	3.3e-5	v	z	3.2e-5	v	z	3.4e-5	۸.	۵.	3.0e-5	·	z	3,4e-5 <	3.6	6-5	3.46-5	۵	3.36-5
Benzo(g,n,i)perylene Benzo(k)fluoranthene	207-08-9	1.9e-5	v v	zz	1.86-5 4.66-5	v v	zz	2.0e-5 4.9e-5		υ σ - 4	.7e-5	v v	zz	2.06-5	2.2	و د د د	2.0e-5 4.9e-5	<u>.</u> .	2.0e-5
Benzyl alcohol	100-51-6	6.2e-5	ν	z	6.2e-5	v	z	6.56-5	, v	z	8e-5	v	z	5.56-5	6.7	2	6.58-5	z	6.48-5
bis(2-Chioroethoxy)methane	111-91-1	1.16-6	٧	z	1.18-6	v	z	1.6e-6	v	2	.0e-6	v	z	1.6e-6	1.7	9-9	1.6e-6	z	1.3e-6
bis(2-Chloroethyl)ether his(2-Ethylbexyl)ohthalate	111444	1.2e-6	v -	z	1.2e-6 2.4e-5	v v	ZΔ	1.8e-6 1.5e-5	₹.	۰ ۰	1.1e-5	v ,	z	1.8e-6 <	2.0	9 19	1.8e-6	م ۵	1.56-6
4-Bromophenyl-phenylether	101-55-3	1.066	2 v	z	1.0e-6	٧	z	2.0e-6	77	· 0.	.5e-7	} v	(z	2.0e-6	J 2.3	99	2.0e-6	. a.	1.5e-6
Butyłbenzylphthalate	85-68-7	1.4e-6	ν	z	1.4e-6	v	z	2.2e-6	7	4	38-6	v	2	2.2e-6 <	J. 2.4	4e-6	2.26-6	۵	1.8e-6
Carbazole	86-74-8	1.46-6	v (z 2	1,46-6	v ,	z 2	2.0e-6	7.7	L 2	.38-6	v 1	zz	2.0e-6	7.5	မှ မ	2.0e-6	ο. 2	1.76-6
4-Chloroaniine	106-47-8	9.8e-6	/ v	z	9.76-6	/ v	zz	1.3e-5	? v	2 2	18-6	/ v	2 2	1.38-5	13	2 40	1.38-5	z	1.18-5
2-Chloronaphthalene	91-58-7	1.0e-6	v	z	1.06-6	v	2	1.7e-6	7.	- G	3.4e-7	v	z	1.7e-6 <	6.6	99	1.7e-6	۵.	1.46-6
2-Chlorophenol	95-57-8	1.2e-6	v	z	1.2e-6	v	z:	1.7e-6	~.	<u>a</u> 1	.1e-6	v	z	1.7e-6 <	8	98-6	1.7e-6	۵.	1.5e-6
4-Chlorophenyi phenyi ether	218-01-0	1.26-6	v ,	zz	29.6	v ,	zz	1.9e-6	3.	2 0	.Te-6	,	Z 2	7. Se-6	2.7	9 9	1.98-6	10	1.58-6
Di-n-but/4phthalate	84-74-2	1.1e-5	, <u>,</u>	۵.	1.16-5	· 7		1.36-5	37		.0e-5	 . 3	2 0.	1.38-5	1.3	0 0	1.38-5	۵.	1.2e-5
Di-n-octylphthalate	117-84-0	1.86-5	Ž.	۵.	1.7e-5	7	۵.	1.8e-5	¬.	٦	.6e-5		<u>_</u>	. Se-5	1.9	5	1.8e-5	۵	1.8e-5
Dibenz(a,h)anthracene	53-70-3	1.96-5	v .	2 2	1.86-5	v .	z .	96-2	7.	٠,	7e-5	v	z:	36-5	2.0	9	1.9e-5	۵.	1.96-5
Ulberzoturan 1 2-Dichlombenzene	95.50.1	26-5	v v	zz	1.28-6	v v	z z	1.9e-6	7 - V V		- Je 5		zz	1.96-6 2. A	2.2	9-90	1.96-6	D. D	
1,3-Dichlorobenzene	541-73-1	1.36-6	· v	z	1.36-6	· v	z	1.96.6			2e-6		. z	999	2.7	9 9	96.0	. a.	1.66-6
1,4-Dichlorobenzene	106-46-7	1.8e-6	7.	۵	2.1e-6	7	а.	2.3e-6		P 2	.1e-6	Γ.	· a.	2.3e-6	2.5	9-6	2.3e-6	а.	2.0e-6
3,3'-Dichlorobenzidine	91-94-1	1.2e-5	v	z:	1.2e-5	v	z	1.5e-5	v	z	16-5	v	z	1.5e-5	1.6	9-5	1.5e-5	z	1.36-5
2,4-Dichlorophenol	120-83-2	1.4e-6	v ,	z 0	1.46-6	v 1	z 2	2.08-6	v ,	z (36-6	v '	z 2	90.0	2.2	9-6	2.0e-6	z	1.7e-6
Directly phthalate	131-11-3	1.16-6	? v	ιz	1.0e-6	, v	zz	1.8e-6	77		7e-7	, v	 z z	. Seb	2.0	9 G	1.86-6	. a	1.4e-6
2,4-Dimethylphenol	105-67-9	6.5e-6	v	z	6.4e-6	v	z	7.1e-6	v	9 Z	0e-6	v	z	7.1e-6	7.4	9-6	7.1e-6	z	6.8e-6
4,6-Dinitro-2-methylphenol	534-52-1	1.4e-5	v '	z	1.4e-5	v ·	z :	1.69-5	v	<i>- (</i>	36-5	v	z :		7.7	55	1.6e-5	z	1.56.5
2.4-Dinitroplemol	121-14-2	3.0e-5 1.4e-6	v v	2 2	1.4e-6	v v	zz	2.2e-5	v 7	2 0	36-6	v v	2 2	29-5	5 6	ç ç	3.26-5 2.26-6	zα	3.1e-3
2,6-Dinitrotoluene	606-20-2	1.3e-6	v	z	1.3e-6	v	z	1.8e-6		۵.	2e-6	v	z	86-6	7 2.0	9-6	1.8e-6	۵.	1.6e-6
1,2-Diphenylhydrazine	122-66-7	1.16-6	v	z:	1.16-6	v	z	1.8e-6	٠.	ъ. с.	.9e-7	v	z:	1.8e-6 <,	2.0	9-6	1.8e-6	۵. ۱	1.4e-6
Fluoranthene	206-44-0 86-73-7	1.16-6	v v	zz	1.1e-6	v v	zz	3.9e-6	7 V		0e-6 0-6	v v	z z		22.2	ر د د	1.9e-6 1.8e-6	<u></u>	1.56-6
Hexachlorocyclopentadiene	77-47-4	1.8e-5	v	z	1.7e-5	v	z	2.0e-5	2 v	. a	.6e-5	V	z	2005	2.2	2 5	2.06-5	۵.	1.96-5
Hexachlorobenzene	118-74-1	1.28-6	v	z	1.26-6	v	z	1.8e-6	۸.	۵.	1e-6	v	z	.8e-6 <,	J 2.0	9-5	1.8e-6	۵.	1.5e-6
Hexachlorobutatiene Hexachloroethane	87-68-3	1.66-6 1.8e-6	v v	zz	1.6e-6 1.7e-6	v v	zz	9 9 9 9 9 9	3.7		ည်မေ ၁၉၈၃	v v	zz	3.66 3.66 5.00	2.5	φφ	2.3e-6 2.3e-5	۵. ۵	2.0e-6 2.0e-6
Indeno(1,2,3-cd)pyrene	193-39-5	1.6e-5	v	z	1.66-5	v	z	1.7e-5	3		5e-5	-	z	7e-5 <	1.8		1.7e-5	. a.	1.7e-5
Isophorone	78-59-1	1.18-6	٧.	z	1.18-6	۷ .	z:	1.8e-6	7:	٠.	.0e-6	v	z	.86-6	2.06	မှ	1.86-6	<u>a</u> 1	1.5e-6
2-Methyliapriniakerie 2-Methylphenol	95-48-7	5.16-6	, v	zz	5.18-6	, ,	. z		? v	7 X	9 9		z z	. v 99.0	- 6	ဝှ မှ	5.8e-6	ız	5.56-6
3-Methylphenol & 4-Methylphenol 6	35794-96-9	3.7e-6	v	z	3.7e-6	v	z	4.4e-6	v	e z	46-6	v	z	, 4e-6 ×	4.7	9	4.48-6	z	4.16-6
N-Nitrosodimethylamine	62,75,0	1.26-6	v v	zz	1.28-b	v v	z z	1.78-6	v -	z 0	16-6	v .	z z	7. 6.6.		op «	1.76-6	zΔ	1.26-5
N-Nitrosodiphenylamine	86-30-6	1.6e-6	v	z	1.6e-6	v	z	2.46-6	. 7	ے: ۔	5e-6		z	46-6	2.6	· φ	2.4e-6	۵.	2.0e-6
Naphthalene	91-20-3	1.20-6	v	zz	1.2e-6	v ,	z	1.96-6	Ţ.,	٠.	16-6	v .	z:	.9e-6	2.7	9	1.96-6	۵.	1.6e-6
3-Nitroaniline	260-65	4.5e-6	, v	2 2	4.46-6	, v	zz		v v	Z Z	26.0		2 2	. ye-0	7 6	9 4	36-0 7-6-0	zz	08-0 5-16-5
4-Nitroaniline	100-01-6	3.9e-6	٧	z	3.9e-6	v	z	5.0e-6	v	ر ا	7e-6		· z	,0e-6 ,0e-6	5.3	φ	5.0e-6	z	4.5e-6
Nitrobenzene	98-95-1	1.86-6	7.	۵.	1.6e-6	₹.	۵. د	2.3e-6	3.	<u> </u>	2e-6 <	<u> </u>	۵. ۱	36-6	2.6	9 1	2.36-6	Δ.	2.0e-6
2-Nitrophenol	100-02-7	8.3e-6	· 7	_ a_	5.96-6	} v	1. Z	7.2e-6		12	26-0 96-9			.0e-5	- 6	ဂ္ဗ	36-6	۱ ۵	7.76-6
2,2'-Oxybis(1-chloropropane)	108-60-1	1.5e-6	. v	z	1.5e-6	v	z	.5e-6	L,>	-	46-6		. z	.5e-6 <	2.8	φ.	2.5e-6	۵.	2.0e-6
Pentachlorobenzene Pentachloronitrohenzene	608-93-5	1,1e-6	v (z 2	1.1e-6	v (z 2	1.78-6	v v	 	06-6		z 2	.7e-6	9, 0	9 9	1.76-6	zz	1.46-6
Pentachlorophenol	87-86-5	3.36-5	, v	z	3.26-5	, v	2 2	3.5e-5	, v	- m - z	8e5			. 8e-5 . 8	i ei	2 17	3.86-5	z	3.46-5
Phenanthrene	85-01-8	1.16-6	v	z	1.1e-6	v	z		7.	6	9e-7	v	z	.9e-6 <,	2.2	9-6	1.9e-6	۵	1.5e-6
Phenol	129-00-0	8.4e-6 1.1e-6	v v	1 Z	4.0e-5	v v	ı z	3.8e-6 7.0e-6	3-5	σ. σ. 	, . 999	·	a z	. 46-6 0-6-6	Ø 6	တ္ ဟု	8.4e-6 2.0e-6	<u>a</u> a	6.1e-6 1.6e-6
Pyridine	110-86-1	1.9e-6	v	z	1.8e-6	v	z	3.2e-6	- v	z	7e-6	ν.	z	2e-6 <	3.5	φ	3.2e-6	z	2.5e-6
1.2.4.5-Fetrachlorobenzene	120-82-1	1.2e-6	v v	zz	1.2e-6	v	2 2	9-96	v J	Z 0	1e-6		z z	ν . φ. φ.	2.0	တ္ ဟု	1.8e-6 1.9e-6	ZΔ	1.5e-6
2,4,5-Trichlorophenol	95-95-4	2.7e-6	v	2:	2.7e-6	v	z	39-6	2 v	Z :	2e-6	. ,,	. z	36-6	18.	. φ	3.3e-6	. z	3.0e-6
Z,4,6-Trichlorophenol	88-06-2 T	1.86-6	7	z	1.7e-6	 V	z	2.46-6	\ \	- -	9-99	_	_ 	× 4e-6	2.bi	9	2.4e-6	z	2.1e-6

able B-17. SVOC emission rates - grames per second comparison

	CAS	STRT-1	Н	Project	FND-1	Н	Project	STRT-2	Н	⊢	END-2	Н	Project M	Max value	_	2+24	Results	Project	STRT	END Rus	_
TICs	Registry	s,6	lag	Specific Flag	s/6	lag	_	s/6	ഗ lag	Specific Flag	s/6	ທ lag		s/6		s/6	s/6	Specific Flag	Run Avgs g/s	Avgs g/s	
2-Benzenedicarboxylic acid.	1330-96-7						l	9.6e-7	O C Z	_		ŀ	l	ı	ō.		9.6e-7	۵.	9.6e-7		_
4-Hexadiene	592-46-1				1.7e-5	Σ	۵.		_			Mή	۵			3.1e-5	1.7e-5	o.		1.0e-5	
.,5-Diethylphenot	876-20-0											N,U,N	۵		Σ'n		1.0e-5	۵.		1.0e-5	
2-Cyclohexene-1-one, 3-methyl-	1193-18-6		-	100		-	-				3.2e-7	M,L,N	۵				3.2e-7	م		3.2e-7	_
2-Hexanone	591-78-6	2.5e-5	Σ	۵		MIN	<u>a</u>									6e-5	2.5e-5	۵	2.5e-5	1.3e-5	
3-Hexanone	589-38-8	2.1e-5	N.J.	۵		Z T	۵.		M,U,4	۵.		Μ'n	۵.			4e-5	2.1e-5	۵	1.6e-5	8.7e-6	
Benzaldehyde	100-52-7	1.2e-4	N.J.N	۵.	8.0e-5	N.J.X	۵.	7.6e-5 N	M.J.M	Δ.	7.4e-5	MUN	۵.	1.2e-4 N.	N.U.M	1.3e-4	1.2e-4	۵	9.8e-5	7.7e-5	_
Benzaldehyde, 4-ethyl-	4748-78-1					Z,	۵		_								6.2e-6	a		6.2e-6	_
Benzaldehyde, ethyl-	53951-50-1										6.2e-6	Σ'n	Δ.	6.2e-6 N,	Σ		6.2e-6	a		6.2e-6	_
Benzo(e)pyrene	192-97-2								0,0,1	۵					Ö		1.6e-6	۵	1.6e-6		
Syclododecane	294-62-2	3.4e-6	Σ, C,	۵		M,U,N	۵	6.4e-7 N	N,C,N	۵		M, N	۵			9e-6	3.4e-6	۵	2.0e-6	2.3e-6	
Dodecane	112-40-3	7.36-6	N,C,N	۵	5.2e-6	N.L.	α.		M.J.	۵		N.U.N	۵			8.7e-6	7.38-6	۵	6.8e-6	4.5e-6	
Eicosane	112-95-8	6.7e-7	Σ̈́Z	۵								W,U,N	۵			16-6	1.96-6	4	6.7e-7	1.9e-6	
-ormic acid, phenylmethyl ester	104-57-4				7.8e-6	Σ'n	۵				9.6e-6	M, N	۵.			1e-5	9.6e-6	۵		8.7e-6	
uran, 2,5-dimethyl-	625-86-5	1.5e-6	Σ̈́	۵.		Σ̈́	۵	1.1e-6 N	Σ'n	۵						1.9e-6	1.5e-6	۵	1.3e-6	8.4e-7	
leneicosane	629-94-7	2.2e-7	N.J.M	۵					_			N,J,N	<u>a</u>	9.2e-7 N,		ge-g	9.2e-7	۵	2.2e-7	9.2e-7	
feptacosane	593-49-7					-			_		8.4e-6	M,U,N	م				8.4e-6	а.		8.4e-6	
feptadecane	629-78-7	9.7e-7	Σ̈́	Δ.	4.3e-7	N,J,N	a.								N,U,N	.5e-6	9.7e-7	a.	9.7e-7	4.3e-7	
Heptane, 2,3-dimethyl-	3074-71-3					Σ'n	۵								M,		1.16-6	۵,		1.1e-6	
leptane, 2,5-dimethyl-	2216-30-0							8.1e-7 N	Σ'n	۵				8.1e-7 N,	Σ'n		8.1e-7	۵	4.0e-7		
lexacosane	630-01-3					-					6.5e-6	N,J,M	<u>ــ</u>	6.5e-6 N,	M,L		6.5e-6	۵		6.5e-6	
Hexadecanoic acid	57-10-3	5.9e-7	Σ̈́	۵.											M,C		5.9e-7	۵	5.9e-7		
Hexanedioic acid, bis(2-ethyth)	103-23-1							1.1e-6 N	Ø,U,N	a.					O'C'N		1.16-6	Δ.	1.16-6		
Hexatriacontane	630-06-8								-		5.8e-7	M.J.M	۵	- 1	J,M		5.8e-7	۵		5.8e-7	
Naphthalene, 1-methyl-	90-12-0							8.9e-7 N	O,L,N	<u>م</u>							8.9e-7	۵	8.9e-7		
Octadecanoic acid	57-11-4	3.96-7	Σ	۵	2.2e-7	Σ. Y.	۵			_				3.9e-7 N,	N,J,M	5.6e-7	3.9e-7	۵	3.9e-7	2.2e-7	
Octane, 3-methyl-	2216-33-3	8.6e-7	Σ	а.									_		Μ'n		8.6e-7	۵	8.6e-7		
Pentacosane	629-99-2										3.8e-6	M,C,Z	۵.	3.8e-6 N,			3.8e-6	Δ		3.8e-6	
Pentadecane	629-62-9	1.6e-6	M.L.N	۵.						-		M,U,N	H		Ĺ	2.7e-6	1.6e-6	۵	1.6e-6	4.6e-7	_
Phosphine oxide, triphenyl-	791-28-6	9.5e-7	Z,	۵											N'n'N		9.5e-7	۵	9.5e-7		
Phosphoric acid tributyl ester	126-73-8	2.5e-6	Σ̈́	۵	1.7e-6	N.	۵					N,C,N	<u> </u>			3.1e-6	2.5e-6	۵	2.5e-6	2.1e-6	
etracosane	646-31-1		_									M,U,N	Δ.	2.6e-6 N,			2.6e-6	۵		2.6e-6	_
etradecane	629-59-4	9.4e-7	M,U,M	۵	1.0e-5	M,L,M	Ь	6.4e-6 N	M,U,M	۵	1.0e-5	M,U,N	a.			1.6e-5	1.0e-5	۵.	3.7e-6	1.06-5	_
etratetracontane	7098-22-8	7.2e-7	N.Z	۵								-		7.2e-7 N.	N.J.N		7.2e-7	۵.	7.2e-7		
idecane	629-50-5	2.2e-6	N.C.	۵	2.3e-6	WΓ̈́N	۵	2.0e-6 N	M,U,M	۵.	2.1e-6	M,J,N	۵.			2.3e-6	2.3e-6	۵	2.1e-6	2.2e-6	_
Fotal Analytes																	1.5e-3				
otal Detected Analytes																	1.2e-3				
													Total Vo	latile Emiss	ions rate	in lhs/hr =	Total Volatile Emissions rate in ths/hr = 0.011826754				
													,		2		200				

158-3 1.28-3 Total Voletile Emissions rate in Ibs/hr = 0.011826754

100000000000000000000000000000000000000	SIII 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		3	Project		t	Ł		F	Services		ľ	Project		ŀ	ı		Ī	Proton		1 N 1
Analyte	Registry	STRT-1 g/s	Flag	Specific	END-1 9/s	Flag	Specific	STRT-2 g/s	Flag	Specific	END-2 9/s	- ທ Flag	Specific	Max value g/s	Flag	Avg+2α g/s	Results g/s	Flag	Specific	STRT Run Avgs g/s	Avgs
Acetone	67-64-1	2.96-5	9	A	3.06-5	8	<u> </u>	2.1e-5	J.B	Z 4	1.6e-5 <	J.B	N A	3.0e-5	8	3,8e-5	3.08-5	В	βV	2.5e-5	2.3e-5
Acrylonitrile	107-13-1	1.16-5	v	z	1.2e-5	· v	z	1.2e-5	; v	z	1.2e-5	įv	z	1.2e-5	· v	1.2e-5	1.26-5	v	z	1.16-5	1.2e-5
Benzene	71-43-2	1.6e-6	v	D.	1.0e-6	v	۵	9.1e-7	Ž.	۵	8.4e-7	v	۵	1.6e-6	٧	1.8e-6	1.6e-6	٧	۵	1.3e-6	9.3e-7
Bromobenzene	108-86-1	4.9e-7	v	z	5.0e-7	v	z	5.0e-7	v	z :	5.0e-7	v	2	5.0e-7	v	5.1e-7	5.0e-7	v .	z	4.9e-/	5.00-7
Bromodichloromethane	75-27-4	6.1e-7	v	2 2	5.0e-7	v v	zz	5.09-7	v v	zz	5 06-7	v v	zz	5.38-7 5.08-7	v v	5.4e-7	5.0p-7	v v	zz	0.26-7 4 9e-7	5.0e-7
Bromoform	75-25-2	7.36-7	v	z	7.6e-7	v	2	7.4e-7	· v	z	7.6e-7	v	z	7.6e-7	· v	7.7e-7	7.6e-7	v	z	7.46-7	7.6e-7
Bromomethane	74-83-9	6.96-7	ر د	۵	9.76-7	۷ ک	۵.	6.2e-7	Ľ,	a	8.4e-7	5	ما	9.7e-7	٠, د.	1.1e-6	9.7e-7	\ \	OL.	6.6e-7	9.0e-7
2-Butanone	78-93-3	3.6e-6	۸. ۱	0. 2	3.7e-6	Ž. /	<u>C</u> 2	3.7e-6	· .	a. 2	3.7e-6	v 1	zz	3.7e-6	ر. ۷	3.8e-6	3.76-6	۸ ،	0. 2	3.7e-6	3.7e-6
n-bulyloenzene soc-Butylbanzana	135,98,8	_	v v	zz	9.56-7	<i>,</i> ,	zz	3.5e-7	· ·	2 2	3.66-7	v v	z z	3.66.7	v v	3.6e-7	3.56-7	/ v	zz	3.58-7	3.6p-7
sec-butyloenzene tert-Butylbenzene	9-90-86	5.7e-7	, v	z	5.9e-7	, v		5.8e-7	· v	zz	5.9e-7	, v	zz	5.9e-7	/ v	6.0e-7	5.96-7	v	z	5.7e-7	5.9e-7
Carbon disulfide	75-15-0	_	v	۵.	5.0e-6	v	م	5.46-6	v	۵	2.7e-6	v	_	5.46-6	v	6.7e-6	5.4e-6	v	a	4.7e-6	3.96-6
Carbon tetrachloride	56-23-5	6.5e-7	٧	z	6.7e-7	v	z	6.6e-7	v	z	6.7e-7 <	ζ.	۵	6.7e-7	v	6.8e-7	6.7e-7	v	۵	6.6e-7	6.7e-7
Chlorobenzene	108-90-7		v	z	4.0e-7	Š,	۵	3.9e-7	v	z	4.0e-7		Д	4.0e-7	7	4.16-7	4.0e-7	^,	۵.	3.9e-7	4.0e-7
Chlorodibromomethane	124-48-1	_	٧	z	6.3e-7	v	z	6.2e-7	٧	z	6.3e-7	v	z	6.3e-7	v	6.4e-7	6.3e-7	٧	z	6.2e-7	6.3e-7
Chloroethane	75-00-3		Š,	۵.	8.46-7	v.	α.	7.0e-7	ر د	۵	6.7e-7	7.	Δ.	8.4e-7	۷,	8.9e-7	8.4e-7	, J	۵	6.8e-7	7.6e-7
Chloroform	67-66-3	9.8e-7	· v	۱ ۵	1.7e-6	v	۵. ۱	1.4e-6	v	۵.	1.6e-6	v	۵.	1.7e-6	v	2.1e-6	1.7e-6	ν	<u>a</u> .	1.2e-6	1.7e-6
Chloromethane	74-87-3		۰ ۱	1 2	7.59-5	v 1	1. 2	5.0e-6	۱ کے	1 2	1.16-5	J: \	1 2	1.2e-5	v 1	1.66-5	1.20-5	٧ ١	1 2	4.9e-b	7.e-5
7-Chlorotoluene	0-84-66	2.46-7	,	2 2	7-90-7	,	2 2	2.46-7	/ \	2 2	2.56-7	/ \	2 2	7-96-7	/ \	2.36-7	2.36-7	/\	z	2.46-7	2 50-7
4-Chlorodollene 1.2-Dibromo-3-chloropropane	96-12-8	1.46-7	/ v	zz	1.36-7 1.26-6	/ v	zz	1.4e-7	/ v	z z	1.16-6	/ v	z z	1.3e-7	/ v	1.36-7 1.26-6	1.36-7 1.26-6	/ v	zz	1.4e-7	1.26-7
1.2-Dibromoethane	106-93-4	8.28.7	, v	2 2	8 46-7	, v	. 2	R 3e.7	, v	2 2	8.4e-7	, v	2 2	R.46.7	· v	8.6e-7	8 49-7	· v	z	8.29-7	8 40-7
Dibromomethane	74-95-3	6.9e-7	v	z	7.26-7	· v	z	7.0e-7	· v	· z	7.16-7	٠ ٧	z	7.2e-7	· v	7.36-7	7.2e-7	v	z	7.06-7	7.2e-7
1,2-Dichlorobenzene	95-50-1	7.36-7	v	z	7.66-7	v	z	7.46-7	v	z	7.6e-7	v	z	7.6e-7	v	7.76-7	7.66-7	v	z	7.4e-7	7.99.7
1,3-Dichlorobenzene	541-73-1	4.1e-7	v	z	4.2e-7	٧	z	4.1e-7	v	z	4.2e-7	v	z	4.2e-7	v	4.3e-7	4.2e-7	٧	z	4.1e-7	4.26-7
1,4-Dichlorobenzene	106-46-7	5.7e-7	v	z	5.9e-7	v	z	5.8e-7	v	z	5.9e-7	v	z	5.9e-7	v	6.0e-7	5.96-7	v	z	5.7e-7	5.96-7
Dichlorodifluoromethane	75-71-8	1.16-6	v	_	6.7e-7	۲,	а.	8.3e-7	v	α.	6.7e-7	۲,	Δ.	1.1e-6	v	1.2e-6	1.16-6	٧	۵	9.4e-7	6.7e-7
1,1-Dichloroethane	75-34-3	6.16-7	v ,	z	6.36-7	ν .	z	6.2e-7	v	z :	6.36-7	v	z	6.36-7	v .	6.46-7	6.36-7	v ,	2 (6.2e-7	6.3e-7
1,2-Dichloroemane	75 25 4	0.06-7	۸ ۸	2.0	7.69.7	? ?		0.06-7	, ,	2 0	0.76-7	, -	zc	7.60-7	ر / ا	0.0e-/	7.60.7	? 7	. 0	0.06-7	7.26-7
r, I-Dichlordemene cis-1 2-Dichloroethene	156-59-2	6.0e-7	} v	LZ	6.39-7	} v	. 2	6.0e-7	} v	. z	6.36-7	? v	ı z	6.3e-7	} v	6.48-7	6.38-7	} v	LZ	6.2e-7	6.36-7
trans-1.2-Dichloroethene	156-60-5		v	z	6.7e-7	v	z	6.6e-7	v	z	7.1e-7	v	z	7.1e-7	v	7.3e-7	7.18-7	v	z	6.88-7	6.96-7
1,2-Dichloropropane	78-87-5		٧	z	5.5e-7	√,	۵.	5.46-7	v	z	5.5e-7	v	z	5.5e-7	آ	5.6e-7	5.5e-7	۸,	۵	5.3e-7	5.5e-7
1,3-Dichloropropane	142-28-9	6.9e-7	٧	z	7.2e-7	v	z	7.0e-7	v	z	7.16-7	v	z	7.26-7	v	7.3e-7	7.2e-7	v	z	7.06-7	7.2e-7
2,2-Dichloropropane	594-20-7	6.5e-7	v	z	6.7e-7	v	z	6.6e-7	v	z	6.7e-7	v	z	6.7e-7	v	6.8e-7	6.7e-7	٧	z	6.6e-7	6.7e-7
-	563-58-6	7.3e-7	v \	z 2	7.6e-7	v (2 2	7.46-7	v \	z 2	7.6e-7	v 1	zz	7.66-7	v v	7.76-7	7.6e-7	v v	z 2	7.46-7	7.66-7
9	10061-01-0	_	/ V	2 2	5.36-7	/ v	2 2	6.26-7	, v	z z	5.3e-7	/ v	2 2	5.36-7	/ v	5.4e-7	6.3e-7	/ v	2 2	7-90.0	2.06.3
	100-41-4		٧	z	3.9e-7	, A	z	3.8e-7	· v	. z	3.9e-7	, v	z	3.9e-7	v	4.0e-7	3.9e-7	٧	z	3.8e-7	3.9e-7
Hexachlorobutadiene	87-68-3	6.0e-7	v	z	9.36-7	v	z	9.1e-7	v	z	9.7e-7	v	z	9.7e-7	v	9.9e-7	9.7e-7	v	z	9.0e-7	9.5e-7
2-Hexanone	591-78-6		v	z:	2.4e-6	v	z:	2.3e-6	v	z	2.4e-6	v	z:	2.4e-6	v	2.4e-6	2.4e-6	v	z :	2.3e-6	2.46-6
isopropylbenzene - Isopropylpijane	98-82-8		v v	zz	7.96-7	v v	zz	2.96-7 4.56-7	v v	zz	2.96-7 4.66-7	v v	z 2	7.96-7	v v	3.0e-/	7.9e-/	v v	z z	2.9e-7	4.6e-7
Methylene chloride	75-09-2	7.36-5	8	. A	7.29-6	œ	4	4.56-6	, B	4	1 8e-6	18	4	7.36-5	, B	9.1e-5	7.3e-5	В	. 4	3.96-5	4.56-6
4-Methyl-2-pentanone	108-10-1	2.4e-6	v	z	2.5e-6	ıv	z	2.4e-6	l v	z	2.5e-6	v	z	2.5e-6	v	2.5e-6	2.5e-6	v	z	2.46-6	2.5e-6
Naphthalene	91-20-3	8.6e-7	v	z	8.8e-7	۷ .	z	8.7e-7	٧.	z:	8.8e-7	٧ .	z	8.8e-7	۷ .	9.0e-7	8.8e-7	۷ '	z	8.6e-7	8.86-7
Styrene	100-62-1	3.26-7	/ v	z	3.36-7	/ v	z	3.26-7	/ v	z	3.36-7	/ v	z	3.39-7	/ v	3.36-7	3.36-7	′ ; v	2 2	3.26-7	3.36-7
1,1,1,2-Tetrachloroethane	630-20-6		v	z	4.2e-7	٧	z	4.1e-7	v	z	4.2e-7	v	z	4.2e-7	v	4.3e-7	4.2e-7	v	z	4.1e-7	4.2e-7
1,1,2,2-Tetrachloroethane	79-34-5		v	z	9.36-7	v	z	9.1e-7	v	z	9.7e-7	v	z	9.7e-7	v	9.9e-7	9.7e-7	٧	z	9.0e-7	9.56-7
Tetrachloroethene	127-18-4	_	v :	z	6.36-7	v	z	6.2e-7	v :	z	6.36-7	v :	z	6.3e-7	v .	6.4e-7	6.36-7	v :	2 (6.2e-/	6.36-7
To 3-Trichlombenzene	87-61-6	7.86-7 8.69-7	Š. v	ı z	8.84-7	Š. v	ı z	1.2e-b 8.7e-7	? v	ız	7.56-7 8.89-7	. v	1 2	8 8e-7	7. v	1.36-b	8.8e-7	۸ ئ	1. Z	8.6e-7	9.7e-7
1,2,4-Trichlorobenzene	120-82-1		v	z	9.36-7	٧	z	9.1e-7	v	z	9.7e-7	v	z	9.7e-7	v	9.9e-7	9.7e-7	٧	z	9.0e-7	9.56-7
1,1,1-Trichloroethane	71-55-6	7.8e-7	٧	z	8.0e-7	v	z	7.8e-7	v	z	8.0e-7	v	z	8.0e-7	v	8.1e-7	8.0e-7	٧	z	7.8e-7	8.0e-7
1,1,2-Trichloroethane	79-00-5	6.96-7	v	2 2	7.26-7	v 1	zz	7.0e-7	v 1	 z z	7.1e-7	v 1	2 2	7.2e-7	v 1	7.36-7	7.2e-7	٧١	z 2	7.06-7	7.26-7
Inchloroethene Trichloroft torromethane	75-69-4	6.5e.7	, <u>,</u>	zα	6.7e-7	v .	z 0	0.0e-7	, ,	z 0	6.7e-7	v .	zΩ	6.7e-7	v .	5.8e-7	6.78-7	√ √	zα	6.6 6- 7	6.76-7
1.2.3-Trichloropropane	96-18-4	9.8e-7	, v	. z	1.0e-6	? v	. z	9.9e-7	, v	. z	1.0e-6	2 v	. z	1.0e-6	, v	1,0e-6	1.0e-6	, v	z	9.86-7	1.06-6
1,2,4-Trimethylbenzene	95-63-6	4.1e-7	v	z	4.2e-7	v	z	4.1e-7	v	z	4.2e-7	· ·	z	4.2e-7	v	4.3e-7	4.2e-7	v	z	4.1e-7	4.2e-7
1,3,5-Trimethylbenzene	108-67-8	2.46-7	v ,	z	2.5e-7	v 7	z	2.4e-7	v .	z	2.5e-7	v :	z	2.5e-7	v .	2.5e-7	2.56-7	ν,	z	2.46-7	2.56-7
	75-U1-4 36777-61-	5.36-7 1.86-6	} v	ιz	1.9e-6	 } v	ız	5.4e-r 1.8e-6		Σ	7.1e-7 1.9e-6	3 v		1.9e-6	} v	8.76-7 1.96-6	1.96-6	? v	ı. Z	1.8e-6	1.96-6
o-Xylene	95-47-6	3.16-7	v	z	3.3e-7	۷,	Д	3.2e-7	٧	z	3.2e-7 <	7.	۵	3.3e-7		3.3e-7	3.36-7	Ĺ,	۵	3.2e-7	3.3e-7

Run	Avos	ng/dscm		5.0e-7		5.0e-7		-4-	1.3e-7		2.3e-7	6-7		_		9.0e-5		8.8e-7	5.8e-7	9-9	9-9	9-9		ie-7	ie-7	1.3e-7	5.0e-6	e-5	9-9-	6-7	
A END Ru			<u>_</u>	_	_	_	L	9	5		2.5	1.7	_	_		9.6		8.8	5.8	(4	2.3	43.		3.6	2.5	1.3	5.0	1.3	1.3	3.5	
STRT Rur	Avas	mg/dscm	2.2e-7	3.0e-7	2.3e-7		2.4e-7	6.4e-7	5.8e-7	2.2e-7		1.3e-7	4.96-7	2.5e-7	2.66-7	1.1e4	2.1e-7		6.4e-7	9.7e-7	1.3e-6		1.1e-7	5.99-7		1.4e-7	3.96-6	5.96-6	2.5e-6	3.2e-7	
Project	Specific	Flag	۵	۵	۵	Δ.	a.	۵	۵	۵.	۵	۵	۵	۵	۵	۵	۵.	۵.	۵	۵	۵	۵	a.	۵	۵	۵	_	۵	۵	۵	
ľ	Fla	ag	M,U,N	Σ̈́	Σ̈́	Σ̈́	M.U.N	Σ C Z	N.O.N	Σ̈́N	Σ'n	N,C,N	N,C,N	Σ'n	Σ'n	Σ, C,	N.J.	Σ̈́	M,C,N	Σ̈́	Ž ⊃'Z	Ž n'	M,U,N	Σ,C N,C	Ν'n	Σ̈́N	Σ, C,	Σ, C,	Σ̈́	Σ, C,	
	Results	s/6	2.2e-7	8.0e-7	2.3e-7	5.0e-7	2.4e-7	8.46-7	7.49-7	2.2e-7	3.36-7	1.7e-7	4.9e-7	2.56-7	2.6e-7	1.36-4	2.1e-7	8.8e-7	8.3e-7	1.3e-6	3.2e-6	1.5e-6	1.16-7	7.36-7	2.5e-7	1.46-7	5.9e-6	1.3e-5	4.1e-6	4.5e-7	
ŀ	Fia	ag	H	-								-				_		_									_				
	Avg+2a	s/6		1.1e-6				1.1e-6	9.46-7		5.2e-7	2.0e-7				1.5e-4			1.0e-6	1.6e-6	3.7e-6			9.9e-7		1.5e-7	6.4e-6	2.2e-5	5.16-6	5.9e-7	
L	Fla		Σ	Σ̈́	Σ'n	Σ̈́Z	Σ'n	Σ ? Z	N.O.Z	Σ'n	N,C,N	Σ̈́	Σ̈́	N.O.	Z.	N O	Z,X	Σ̈́	Ž,Z	N,J	Σ	Σ̈́	Σ̈́	Σ, C,	ž	Σ̈́	∑ O'Z	∑, Z,	Σ	Σ̈́	
 -	Max value	s/6	2.2e-7	8.0e-7	2.3e-7	5.0e-7	2.4e-7	8.4e-7	7.46-7	2.26-7	3.36-7	1.7e-7	4.9e-7	2.5e-7	2.6e-7	1.36-4	2.1e-7	8.8e-7	8.3e-7	1.3e-6	3.2e-6	1.5e-6	1.1e-7	7.36-7	2.5e-7	1.46-7	5.96-6	1.36-5	4.1e-6	4.5e-7	
_	-	Flag		۵				۵.	۵		a.					۵			۵	۵.	۵			<u>a</u>	_	۵	م	۵	۵	۵	
H	Fla		l	Σ'n				Σ̈́	Σ'n		N,U,N					Σ, X		_	M,C,N	Σ'n	Σ̈́			Σ'n'ż		Σ̈́	Σ	Σ̈́	Σ'n	Σ, C, Z	
	END-2	s/6		2.0e-7					1.16-7		1.36-7					7.1e-5				1.0e-6				5.9e-7		1.36-7	5.9e-6				
Project	Specific	Flag	r	Δ.				o.	۵	۵		۵		۵.		۵.	۵		Δ.	a.	о.			a.	_	α.	Δ.	Δ.	a.	۵	
H	Fla	_	┝	Σ'n				M,U,4	M,U,	M,U,N	_	Σ'n	_	M,U,N	-	M.C.	M.J.		M,C,1	N,⊃,X	Σ'.			Σ		N,U,N	W,∵	M,J,	N.J.N	M,C,	
	SIRI-2	s/s		3.0e-7					7.4e-7			1.5e-7		2.5e-7			2.1e-7 N			1.2e-6 N				4.5e-7 N			4.0e-6 N				
⊢	_	Flag		۵		Δ		a.	۵		_	۵				۵		Ь	_	۵	۵	۵		Δ.	Δ	_	_	۵.	۵		
r	Fla			M,U,N		M,U,M		M,C,N	M,U,N		N,U	Σ̈́N				N.U.X	_	Σ.C.X	N,J,N	Σ, C,	Σ'n	Σ,C,		Σ̈́	M,C,N	_	M,U,N	Σ'n	Σ,C,N	_	
1	ENC.	g/s		8.0e-7		5.0e-7			1.5e-7		3.36-7					1.164			7.6e-7			1.5e-6			2.5e-7						
Project	Specific	Flag	n.		o.		D.	۵	۵			۵	۵.		۵	۵			۵	۵.	۵		۵	۵			<u>a</u>	۵	۵	۵	
ľ	Fla	ag	N.J.		Σ		Ν̈́	Σ Z	Σ			M,C,N	Σ̈́N		N,J,M	Σ'n			M,U,M	N,J,N	Σ C'N		M.U.N	Σ̈́			M,U,N	Σ, Z	N,C	Σ, N	
	22.0	s/6	2.2e-7		2.3e-7		2.4e-7	4.5e-7	4.1e-7			1.1e-7	4.9e-7		2.6e-7	1.36-4			4.5e-7	6.9e-7	1.68-6		1.1e-7	7.3e-7			3.8e-6	1.16-5	4.16-6	4.5e-7	
CAS	Dociotor	Number	592-76-7	100-47-0	109-69-3	2597-49-1	4292-75-5	108-87-2	110-83-8	2452-99-5	822-50-4	1640-89-7	124-18-5	62237-96-1	1002-17-1	112-40-3	6044-71-9	544-76-3	589-43-5	591-76-4	589-34-4	76-06-2	111-65-9	565-59-3	562-49-2	617-78-7	629-59-4	629-50-5	1120-21-4	7301-23-4	
	- JIL	3	-Heptene	3enzonitrile	3utane, 1-chloro-	Syclobutane, ethenyl-		Syclohexane, methyl-		Syclopentane, 1,2-dimethyl- 2452-99-5	Syclopentane, 1,2-dimethyl-, t 822-50-4	Syclopentane, ethyl-		Decane, 2,2,5-trimethyl-		odecane	lodecane, 6-methyl-	lexadecane	lexane, 2,4-dimethyl-	lexane, 2-methyl-	lexane, 3-methyl-	Aethane, trichloronitro-	Octane	Pentane, 2,3-dimethyl-	Pentane, 3,3-dimethyl-			ridecane	Indecane	Indecane, 2,6-dimethyl-	

3.5e-4 3.0e-4 Total Semivolatiles in Ibs/hr 0.002769813

B19.1 - 1

4.5e-5 4.2e-5 9.2e-4 3.6e-4 1.9e-4 **END Run** Avgs g/s 3.1e-4 3.2e-5 3.2e-5 4.3e-5 1.1e-3 1.8e-4 2.6e-4 STRT Run Avgs g/s Flag മമ∨ v 🕮 3.3e-4 5.8e-5 Results 4.5e-5 1.4e-3 3.8e-4 4.0e-4 s/b Flag 4.7e-5 1.5e-3 4.9e-4 5.2e-4 Avg+2σ 6.4e-5 3.4e-4 s/b v m മമ∨ Flag Max value 3.3e-4 5.8e-5 4.5e-5 1.4e-3 3.8e-4 4.0e-4 s/b Flag 3.2e-4 3.2e-5 4.3e-5 7.9e-4 3.4e-4 8.9e-5 END-2 s/b m v V Flag Table B-19. 0050 emission rates - grams per second comparisons. 3.2e-4 3.0e-5 4.1e-5 STRT-2 9.4e-4 1.7e-4 1.2e-4 s/b മെയ vω Flag 2.9e-4 5.8e-5 4.0e-5 1.1e-3 3.8e-4 2.9e-4 END-1 s/b Flag a v v v m 3.3e-4 3.3e-5 4.5e-5 STRT-1 1.4e-3 1.8e-4 4.0e-4 Chloride (as Cl2) Fluoride (as HF) Nitrate (as HNO3) Nitrite (as HNO2) Chloride (as HCI) Analyte Particulate

maximum hourly emissions

B19.1 - 1

able B-19. Uubu emission rates - grams per second	mission ra	- 521	grains per se		a companion a											
Analyte	STRT-1 H	Flag	END-1 g/s	Flag	STRT-2 g/s	Flag	END-2 g/s	Flag	Max value <u>a</u> g/s ©		Avg+2σ g/s	Flag	Results g/s	Flag	STRT Run Avgs g/s	END Run Avgs g/s
Chloride (as HCI)	3.3e-4	æ	2.9e-4	æ	3.2e-4	B	3.2e-4	В	3.3e-4 B	-	3.4e-4		3.3e-4	m	3.2e-4	3.1e-4
Chloride (as CI2)	3.3e-5	٧	5.8e-5	В	3.0e-5	٧	3.2e-5	٧	5.8e-5 B		6.4e-5		5.8e-5	ω	3.2e-5	4.5e-5
Fluoride (as HF)	4.5e-5	٧	4.0e-5	٧	4.1e-5	٧	4.3e-5	٧	4.5e-5 <	,,	4.7e-5	-	4.5e-5	v	4.3e-5	4.2e-5
Nitrate (as HNO3)	1.4e-3		1.1e-3		9.4e-4		7.9e-4		1.4e-3		1.5e-3		1.4e-3		1.1e-3	9.2e-4
Nitrite (as HNO2)	1.8e-4	٧	3.8e-4	٧	1.7e-4	٧	3.4e-4	٧	3.8e-4 <		4.9e-4		3.8e-4	٧	1.8e-4	3.6e-4
Particulate	4.0e-4	В	2.9e-4	മ	1.2e-4	_	8.9e-5	В	4.0e-4 B		5.2e-4		4.0e-4	В	2.6e-4	1.9e-4

maximum hourly emissions

B20.1 - 1

	(• (Project		r	Droing		ľ	Project		F	100,000		r		-			FOTO	
Analyde	CAS	STRT-1	Fla	Specific	END-1	Fla	. (STRT-2	Fla	Specific	END-2	Fla	Project	Max value	Fla	Avg+2a	Results	Fk	Specific	Dun Avas	אימיניים
	Number	s/b		Flags	g/s		Flags	s/B		Flags	s/b	_	Flags	s/b	ag	s/6	s/6	ag	Flag	s/b	s/b
Aluminum (AI)	7429-90-5	1.6e-5		4	2.5e-5	T	4	8.3e-6	T	┢	8.2e-6	T	٨	2.5e-5	T	3.4e-5	2.5e-5		∢	1.2e-5	1.7e-5
Antimony (Sb)	7440-36-0	5.3e-7.	m	<	4.8e-7	ω	∢	4.9e-7	В		4.6e-7	œ	4	5.3e-7	æ	5.5e-7	5.3e-7		∢	5.1e-7	4.7e-7
Arsenic (As)	7440-38-2	1.8e-7	ν Ω	۵.	1.5e-7	v	z	1.8e-7	v	z	1.8e-7	v	z	1.8e-7	۸ آ	2.0e-7	1.8e-7		۵	1.8e-7	1.6e-7
Barium (Ba)	7440-39-3	7.7e-7	20	∢	9.4e-7	Ф	∢	5.6e-7	ω	∢	5.3e-7	ω	∢	9.4e-7	В	1.1e-6	9.4e-7		∢	6.6e-7	7.3e-7
Beryllium (Be)	7440-41-7	7.4e-8	A,	۵	6.1e-8	A,	۵	7.1e-8	ω V	۵	7.3e-8	A,	۵	7.4e-8	ω V	8.3e-8	7.4e-8	 	۵	7.3e-8	6.7e-8
Cadmium (Cd)	7440-43-9	5.3e-8	В	∢	7.7e-8	ø	<	3.0e-8	Θ V	۵.	3.0e-8	v	z	7.7e-8	æ	1.0e-7	7.7e-8		۵	4.1e-8	5.3e-8
Chromium (Cr)	7440-47-3	3.4e-7		∢	4.4e-7		<	2.7e-7		<	5.7e-7		∢	5.7e-7		5.2e-7	5.2e-7		∢	3.1e-7	5.1e-7
Cobalt (Co)	7440-48-4	3.1e-7	В	<	2.5e-7	v	z	3.0e-7	٧	z	3.0e-7	v	z	3.1e-7	В	3.5e-7	3.1e-7		۵	3.0e-7	2.8e-7
Copper (Cu)	7440-50-8	4.9e-7	۵	∢	3.4e-7	ω	٧	2.5e-7	В	A	1.6e-7	Θ.	a	4.9e-7	മ	6.0e-7	4.9e-7		۵	3.7e-7	2.5e-7
ead (Pb)	7439-92-1	1.5e-7	e V	۵.	1.2e-7	ω	∢	1.5e-7	v,B	Δ.	1.3e-7	A N	۵	1.5e-7	۸ B	1.8e-7	1.5e-7		۵	1.5e-7	1.3e-7
Manganese (Mn) 7439-96-5	7439-96-5	2.2e-6		∢	2.2e-6		<	4.2e-6		∢	8.0e-6		⋖	8.0e-6		5.1e-6	5.1e-6		∢	3.2e-6	5.1e-6
Mercury (Hg)	7439-97-6	1.1e-5		∢	1.4e-5		۵	1.2e-5		۵	1.2e-5		۵.	1.4e-5		1.5e-5	1.4e-5		۵	1.2e-5	1.3e-5
Nickel (Ni)	7440-02-0	5.7e-7	В	∢	5.6e-7	В	V	4.9e-7	Ф	4	4.6e-7	മ	∢	5.7e-7	മ	6.3e-7	5.7e-7		∢	5.3e-7	5.1e-7
Selenium (Se)	7782-49-2	3.7e-7	ω	∢	2.0e-7	٧	a.	2.9e-7	ω	∢	2.6e-7	ω	∢	3.7e-7	മ	4.5e-7	3.7e-7		۵	3.3e-7	2.3e-7
Silver (Ag)	7440-22-4	3.0e-7	٧	z	2.4e-7	٧	z	2.9e-7	v	z	2.9e-7	v	z	3.0e-7	٧	3.3e-7	3.0e-7		z	2.9e-7	2.7e-7
rhallium (TI)	7440-28-0	2.9e-7	٧	z	2.2e-7	٧	z	2.7e-7	v	z	2.7e-7	٧	z	2.9e-7	٧	3.3e-7	2.9e-7		z	2.8e-7	2.5e-7
Vanadium (V)	7440-62-2	3.1e-7	٧	z	2.5e-7	٧	z	3.0e-7	v	z	3.0e-7	٧	z	3.1e-7	٧	3.5e-7	3.1e-7		z	3.0e-7	2.8e-7
Zinc (Zn)	7440-66-6	7.0e-6		∢	1.1e-5		∢	3.3e-6		∢	1.9e-6		<	1.1e-5		1.5e-5	1.1e-5		∢	5.1e-6	9-99 ⁻ 9
Total Metals																	6.1e-5				
Iotal Detected Metals	Metals																400				

4.6e-8 4.7e-8 1.7e-7 2.7e-7 2.9e-7 3.0e-6 3.0e-6 1.3e-5 1.0e-17 1.0e-17 2.5e-7 2.5e-7 2.5e-7 6.8e-6 1.6e-5 1.2e-7 8.7e-8 2.9e-7 Run Avgs 5.0e-8 3.5e-8 1.0e-7 3.0e-7 3.0e-7 3.0e-6 1.5e-7 1.5e-7 1.5e-7 2.8e-7 2.8e-7 4.6e-6 1.1e-5 1.1e-7 9.6e-8 1.5e-7 Project Specific <00<000<00 AUZZZA Flag Results 2.4e-5 1.4e-7 1.4e-7 1.2e-8 2.7e-7 1.1e-7 1.1e-17 1.1e Flag Avg+2a 3.2e-5 1.6e-7 1.1-1e-7 1.1-1e-7 1.6e-7 3.3e-7 3.3e-7 3.3e-7 3.3e-7 3.3e-7 3.3e-7 3.3e-7 3.3e-7 1.5e-5 1.5e-5 1.5e-5 s/6 Flag Max value 2.4e-5 1.4e-7 9.9e-8 9.2e-7 5.2e-7 7.1e-8 2.7e-7 5.0e-7 1.1e-17 3.3e-7 3 Project Specific Flags ∢ ₫ \forall \forall Z Zയ ∧ യ ∧ ∧ യ യ യ യ v B v Flag END-2 7.5e6 1.0e-7 9.9e-8 9.9e-8 2.3e-8 7.4e-8 7.4e-8 1.1e-7 1.1e-17 1.1e-17 1.1e-17 2.9e-7 2.9e-7 2.9e-7 2.9e-7 2.9e-7 2.9e-7 2.9e-7 2.9e-7 2.9e-7 2.9e-7 3.9e-8 3.9e-8 3.9e-8 3.9e-8 3.9e-9 3.0e-9 Project Specific 4 Z 4 Q Q 4 Z Z 4 Q 4 Q Z Z 8 × × Flag 7.5e6 1.0e-7 9.4e-8 9.9e-8 5.9e-8 7.4e-8 3.0e-7 1.1e-7 1.1e-7 1.1e-7 2.5e-7 1.1e-7 2.5e-7 1.1e-7 2.5e-7 2.5e-7 2.5e-7 2.5e-7 3.0 STRT-2 3.0e-7 2.8e-6 Table B-21. 0060 blank corrected emission rates - grams per second comparisons. Project Specific Flag 2.4e-5 1.4e-7 1.6-7 1.6-8 1.2e-7 2.5e-7 3.4e-7 3.4e-7 3.4e-7 1.4e-5 2.2e-7 2.2e-7 2.2e-7 2.2e-7 2.2e-7 1.1e-5 1.1e-5 1.1e-5 1.1e-5 END-1 Project Specific Flags zσ 4 C 4 4 4 4 Z Z u o o o o ш ш v, Flag 2.5e-7 5.2e-8 4.6e-8 1.8e-7 1.1e-17 3.0e-7 STRT-1 5.0e-7 1.0e-7 2.0e-6 3.1e-7 1.3e-7 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-62-2 7440-62-2 7440-48-4 7440-50-8 7439-92-1 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7439-96-5 Registry CAS Manganese (Mn) 7 Mercury (Hg) 7 Nickel (Ni) 7 Selenium (Se) 7 Aluminum (Al)
Antimony (Sb)
Arsenic (As)
Barium (Ba)
Beryllium (Be)
Cadmium (Cd)
Chromium (Cr) Cobalt (Co) Copper (Cu) Lead (Pb) Silver (Ag) Thallium (Tl) /anadium (V) otal Metals Zinc (Zn)

Total Detected Metals

			_	Oncollio	5	-	Coccide	2					DOING VOICE			chocavi		4.000	Avon
c Z	Number 1	mg/dscm	ag		mg/dscm	ag		mg/dscm	ag	Plag Hg/	g wsp/61			ag F	ag wosp/6ri	mg/dscm	ag Bedic	mosp/dri	mg/dscm
80	83-32-9	3.1e0	v	z	3.2e0	v	z	5.2e0	7.	<u>د</u>	v Oeo	z	5.2e0	۷,	5.7e0	5.2e0	_	4.2e0	3.160
7	8-96-8 ₁	3.0e0	v	z	3.1e0	ν	z	5.2e0	7	انة م	2.9e0 <	z	5.260	v.	5.7e0	5.2e0	۵	4.1e0	3.0e0
თა	98-86-2	1.6e1	₹,	۵.	1.2e1	₹,	۵.	1.4e1	₹,	٠.	je :	a :	1.6e1	γ,	1.7e1	1.6e1	۵.	1.5e1	1.2e1
5	20 42 7	3.000	1	z	0.0e1	,	2 2	80 6	,	5 c	196	2 2	4.06	v .	5.2e1	4.061	2 0	4 700	900
2 6	92.87.5	2 1a2	/ v	2 2	2. Leo	, v	2 2	Sec.	3 v		167	_	2 682	? v	2.762	2.5e2	٠z	2462	2.000
ő	65-85-0	1.6e3	ш	<u>a</u>	8.5e2	Щ. V	<u> </u>	7.4e2	ш	<u>ه</u>	3e2 E	α.	1.6e3	ш	1.8e3	1.6e3	Δ.	1.263	8.4e2
ιń	56-55-3	3.8e0	٧	z	3.960	v.	z	3.1e0	ار.	e.	7e0 <	z	6.1e0	۲,	6.7e0	6.1e0	۵	5.0e0	3.8e0
, w	50-32-8	4.261	, ·	z	4.361	v ,	2 2	.5e1	7.7	⊕ (4.0ef <	z :	4.5e1	۸.	4.7e1	4.5e1	۵. ه	4.3e1	4.1e1
4 2	01-24-2	5.0e	, v	2 2	5.6a1	, ,	2 2	9.7e	? .	i io	100	2 2	90.04	/ `	5.0e2	3.00 Page 1	. a		5.401
20	207-08-9	1.4e2	v	z	1.4e2	v	2	462	. 7	. 0.	362 <	2	1.462	· v	1.462	1.4e2	. 0	1.4e2	1.4e2
	100-51-6	1.8e2	v	z	1.962	v	z	. 8e2	v	z	8e2 <	z	1.9e2	٧	1.9e2	1.9e2	z	1.8e2	1.8e2
Chloroethoxy)methane 11	111-91-1	3.2e0	v	z	3.3e0	٧	z	.5e0	- v	esi Z	.1e0 <	z	4.560	٧	4.9e0	4.5e0	z	3.9e0	3.260
=	111-44-4	3.580	v	z.	3.6e0	٧	z	.2e0	7.	ര്	v 0et	z	5.2e0	Ž.	5.6e0	5.2e0	۰	4.3e0	3.560
=	7-81-7	3.8e1	7	4	7.2e1	v	<u>.</u>	1.2e1	7	A	9e1 <,	∢	7.2e1	v	8.1e1	7.281	۵.	4.0e1	6.1e1
omopheny/-phenylether 10	200	3.060	v -	z :	9.5	y .	z :		7.	2 .	v .	z :	5.Be0	v.	6.5e0	5.860	1	094.4	3.080
o č	100-00	4.2e0	,	z :	900	, ,	2 :	200	3 :	4:	0.00	z :	6.1eU	? :	0.000	6.1e0	Σ (9 6	4.150
o ič	0 1 0 0	5.400	_	2 2	5.50	/ \	. z	0.0e0	3.7	÷ ù	2 2	Z 2	0.0e0	? 7	1 101	3.0e0	. 2	7 790	. 4 6 6
, 5	08-47-8	2 Qe1	, v	z	2 Qe1	v	2	991	? v	2 2	Sol v	2	S For	? v	3.701	S. S.	2 2	3.2pt	2 Qe1
2 6	91-58-7	3060	· v	z	30e0	· v	. z	. Ge	, ,		0-6	2 2	4 Bed	, ,	5360	8 4 0 8 9 0	۵.	3960	3.0e0
ō	95-57-8	3.5e0	v	z	3.660	v	z	860	. 7	٠ م	460 <	z	4 860	7	5.2e0	4 8e0	. α.	4.2e0	3.5e0
700 Z	5-77-36	3.500	· v	z	3,640	v	: 2	5a0			A Del	: z	5.500	7	6.0e0	5.500	. а	4.500	3.500
5 6	0,10	3.8e0		2	3 960		: 2	Ran	3 -	. 0	700	2	98.0	, -	7 500	S Roo	. 0	5 3e)	3.840
7 8	84.74.2	3.260	, ,	2 0	3.3e.0	, ,	2 0	0000	37	. 0	3 5	2 0	0.0eC	? 7	1.360	3.6ot	۵ م	3.464	3.200
6;	7 7 7	2.50	? :	ı. (200	, ;		5 6	7	ر ز د	2	L (200	7:	- i	3.06	۱. (2	27.5
= 1	7.84	9. e	3.	1. 2	5.2e1	3.	1. 2		3.7	4 i	- S	1 2	5.2el	ζ.,	5.461	5.Ze1	L	0.16	9 6
n Ş	27.0	0.461	,	2 3	3.0e1	1	2 2	8	? :		197	2 :	0.06	,	0.00	90.0		900	0 0
26	32-64-3	3.560	v ,	z :	3.660	v ,	z :	000	3. 7	2.0	09,	z :	2.560	Ş.:	6.0e0	5.560	1.0	096.4	2.260
ָה ה	1000	3.560	,	z :	3.0e0	,	z :	7.2eV	3:	1.1	v 094	z :	5.2eU	? :	2.660	097.G	٠.	000	3.0e0
y d	541-73-1	3.390	v :	z	3.9eU	v ;	z (260	3.	200	v :	z (5.5eU	Š	5.980	2.260	2 (4.760	3.860
4	06-46-7	5.160	7.	۵.	3.960	3	a.	.2e0	7	9	5e0 <,J	۵	6.5e0	7	7.2e0	6.5e0	۵	5.160	5.2e0
о	1-9-1	3.591	v	z	3.6e1	v	2	.2e1	- -	ਲੇ -	te1 <	z	4.2e1	v	4.461	4.2e1	z	3.9e1	3.5e1
12	20-83-2	4.260	v	z	4.3e0	v	2	.860	- v	7	000	z	5.8e0	v	6.2e0	5.8e0	z	5.0e0	4.160
ಹ	1-66-2	5.1e0	7.	α,	4.9e0	·	ż	8	7	д 4.	> 099	z	7.1e0	₹.	7.7e0	7.160	۵.	6.1e0	4.8e0
13	1-11-3	3.1e0	v	z	3.160	v	z	.2e0		3.C	> 0eC	z	5.2e0	γ.	5.7e0	5.2e0	۵	4.1e0	3.0e0
4	05-67-9	1.9e1	v	z	1.9e1	v	z	.0e1	- v	3. -	Se1 <	z	2.0e1	٧	2.1e1	2.0e1	z	1.9e1	1.9e1
53	534-52-1	4.281	٧	z	4.361	v	z	.5e1	_	7	4.0e1 <	z	4.5e1	٧	4.7e1	4.5e1	z	4.3e1	4.1e1
0	1-28-5	8.6e1	v	z	8.8e1	v	z	.0e1	_	2	se1 v	z	9.0e1	٧	9.3e1	9.0e1	z	8.8e1	8.6e1
12	1-14-2	4.2e0	v	z	4.3e0	v	z	160	7	٠ 4	× 0æ	z	6.160	٠,	6.6e0	6.160	۵	5.16	4.1e0
99	306-20-2	3.8e0	v	z	3.9e0	v	z	.2e0	l C'>	3.7	re0 <	z	5.2e0	۲''>	5.5e0	5.2e0	а	4.5e0	3.8e0
12	22-66-7	3.1e0	v	z	3.2e0	v	z	2e0	7	3	v 090	z	5.2e0	3	5.7e0	5.2e0	۵	4.2e0	3.160
2	206-44-0	3.2e0	v	z	3.3e0	v	z	.5e0	7	ر ج	3.1e0 <	z	5.5eO	7	6.1e0	5.5e0	a.	4.360	3.2e0
ď	7.57	3.2e0	v	z	3.3e0	v	z	.2e0	7	3	160 <	z	5.2e0	Ÿ	5.760	5.2e0	۵	4.260	3.2e0
7,7	474	5.1e1	v	z	5.2e1	v	z	.8e1	v	4	A +	z	5.8e1	٧	6.0e1	5.8e1	۵	5.5e1	5.1e1
	18-74-1	3.5e0	v	z	3,660	v	z	,2e0	7	34	3.460 <	z	5.260	7	5.6e0	5.2e0	Δ	4.3e0	3,5e0
6	87-68-3	4.8e0	v	z	4.9e0	v	z	. 5e0		4	v Oec	z	6.500	7	6.9e0	6.5e0	Δ.	5.690	4.8e0
190	-72-1	5.1e0	v	z	5.2e0	v	z	.5e0		4.5	960	z	6.5e0	₹.	6.8e0	6.5e0	۵.	5.8e0	5.1e0
19	3-39-5	4.8e1	v	z	4.9e1	v	z	.8e1	۲,	4.6	> 1eg.	z	4.961	v	5.0e1	4.9e1	۵	4.8e1	4.8e1
7	78-59-1	3.2e0	v	z	3.3e0	v	z	.2e0	7	<u>ب</u>	.1e0 <	z	5.2e0	?	5.7e0	5.2e0	α,	4.2e0	3.2e0
6	91-57-6	3.2e0	v	z	3.3e0	v	z	980	J.		1e0 ^	z 	4.860	7	5.3e0	4.860	a.	4.0e0	3.2e0
ð.	748-7	1.5e1	v	z	1.5e1	v	z	.ee	- v	-	4e1	z	1.6e1	v	1.7e1	1.6e1	z	1.6e1	1.5e1
ithylphenol & 4-Methylphenol 657	94-96-9	1.1e1	v	z	1.181	v		.3e1	v	~ ~)e1 v	z	1.3e1	v	1.3e1	1.361	z	1.2e1	1.1e1
8	621-64-7	3.560	v	z :	3.580		z :	.BeO	v .	70	v 00:	z:	4.860	v	5.2e0	4.860	z	4.2e0	3.560
0 6	65-72-8	2.560	,	z :	3.560	,	z :	9 9			2 0	z :	4.880	ÿ. :	5.260	4.860	Σ.	1.260	3.560
5 0	30-30-6	4.860	,	z :	1960 1970	, ,	z :	200	3.7	÷ ;	v 200	z :	0.00	?	7.360	0.000	1	2.000	4.880
nc	201-100	3.360	, ,	2 2	3.040	, ,		3 5	3.		2 9	z :	0000	?	0.050	Dac o		4.580	0.00
5 8	7 00	3.0e0	, ,	2 2	3.080	, ,	2 2	200			2 1	2 2	0.060	, .	0.060	0.060	2 2	4.000	2000
i Ş	39-03-2	9 6	, ,	2 2	500	, ,		2		-	2 1	2 2	9	′ '	10.0	1.00	2 2	B .	2 6
2 8	0.00	200	, ;	2 0	0-0-0	, ;	2 0	2 0			2 3	2 0	- 0	, ;	1.361	-	2 0	9	4 200
ń 8	5656	2 1	3 ,		9 1	? ;		200	7 7		<i>?</i> :	۱ .	000	?	0.000	0.00		0.000	7.70
ŏ S	5 5	2.36	, :	١. (?	- ·	7.61	?		7	_	2.36	, .	30.0	196.7	۱ ۱	7. E	
	00-02-7	2.4e1	3	L :	900	,	z :	e,	v :	-	7 10 (<u>.</u>	2.4eT	7	7.0e1	2.461	٠,	7.5e	
-Oxygre I-calloroparie)	2 2	20.4	,	z :	200		- ·	8 9	3	4	v i	z :	7.90	?	7.9e0	20.7	. :	0.060	024.4
8 8	6-60-60	25.50	, ,	z :	0.000	, ,	z 2	990			2 5	z :	9 5	, ,	5.360	4.080	z 2	09.5	02.2
ő	000	3.580		z.	3.560	,	z .	760	- v	2.0	4eu ×	z 	2.260	v	5.560	5.280	z	4.360	3.000
· ·	-86-5	9.6e1	v	z :	9.8e1	v	z :	062	v '	= :	1e2 <	Z :	1.162	v	1.262	1.1e2	zı	9.8e1	1.162
zó :	8-17-68	3.160	v	2 1	3.260	v	2 1	Dec.		3	v	z	5.560	V	6.160	5.580	1	4.3eU	3.160
2	7-68-90	Z.561	 v	1	- 5e	- -	L :	[9]	3		Zel v	1	7.56	v	7.8e	7.5e1	2.	98	1.261
12	129-00-0	3.260	·	2:	3.3e0	v	z :	5.8e0	3	E :	5. 5. 5.	z :	5.8e0	Ď.	6.5e0	5.8e0	a :	4.5e0	3.2e0
= ;	110-86-1	5.480	v	z :	2.560	v	z :	.oe	- ·	9.7	v 99:	z :	9.060	ν	1.0e1	9.0e0	z :	7.260	5.460
<u></u>	4	3.5e0	v	z	3.6e0	v	z	260	~ v	3.4	4e0 ×	z	5.2e0	v	5.6e0	5.2e0	z	4.360	3.5e0
12	120-82-1	3.8e0	v	z	3.9e0	v	z	5.5e0		3.7	3.7e0 <	z	5.580	Ž.	5.9e0	5.5e0	۵	4.7e0	3.8e0
86		8.0e0	v	z	8.2e0	v	z	.4e0	~ v	- 72	, oo,	z	9.460	v	9.8e0	9.4e0	z	8.7e0	7.9e0
38	_	5.1e0	_	_ z	5.2e0	_ v	_ _	.8e0	_ _ v	4.9	v Cel	z	6 Ren	~	7 200	6 Red	2	1 000	5.160

Table C-1. VOC target analyte list reported by the INTEC ALD.

CAS#	Compound	CAS#	Compound
74-87-3	Chloromethane	79-01 - 6	Trichloroethene
75-01-04	Vinyl Chloride	78-87 - 5	1,2-Dichloropropane
74-83-9	Bromomethane	75-27-4	Bromodichloromethane
75-00-3	Chloroethane	10061-01-5	Cis-1,3-dichloropropene
75-69-4	Trichlorofluoromethane	108-10-1	4-Methyl-2-pentanone
75-35-4	1,1-Dichloroethene	108-88-3	Toluene
76-13-1	1,1,2-Trichloro-1,2,2-	10061-02-6	Trans-1,3-dichloropropene
	trifluoroethane		
75-15-0	Carbon disulfide	79-00-5	1,1,2-Trichloroethane
67-64-1	Acetone	127-18-4	Tetrachloroethene
75-09-2	Methylene chloride	591-78-6	2-Hexanone
	(Dichloromethane)		
156-60-5	Trans-1,2-dichloroethene	124-48-1	Dibromochloromethane
75-34-3	1,1-Dichloroethane	108-90-7	Chlorobenzene
156-59-2	Cis-1,2-dichloroethene	100-41-4	Ethylbenzene
78-93-3	2-Butanone	108-38-3	M-xylene and 106-42-3 p-xylene
67-66-3	Chloroform	95-47-6	O-xylene
71-55-6	1,1,1-Trichloroethane	100-42-5	Styrene
56-23-5	Carbon tetrachloride	75-25-2	Bromoform
71-43-2	Benzene	79-34-5	1,1,2,2-Tetrachloroethane
107-06-2	1,2-Dichloroethane		

Section Part	Table B-23, 0031 concentration-basis.	basis.		ŀ	L		f			ŀ	ŀ					ŀ			Ì			
10 12 13 13 14 15 15 15 15 15 15 15	Analyte	Registry	STRT-1 µg/dscm			END-1			STRT-2 g/dscm			ND-2 Vdscm			ax value y/dscm			Results µg/dscm	Flag	Specific	Avgs	Avgs
The color of the		67-64-1	8.9e1	-	4	9.2e1	a	5 4	6.301	<u>_</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.8e1	8	N V	5.361	<u>_</u>	1202	6.361	=		5.3e1	4 8e1
1,000,000 1,000		107-13-1	3.5e1	. v	z	3.6e1	y ((Z	3.5e1	j. v	(Z	36e1	į v	(z	3.6e1	1 v	3.6e1	3.661	j v	z	3.5e1	3.6e1
Marcol 1500 Marcol Mar		71-43-2	4.960	v	۵	3.160	v	a	2.8e0	~	٠,٧	.6e0	v		960	v	5.5e0	4.9e0	٧	۵.	3.9e0	2.8e0
1975 1980 C		108-86-1	1,5e0	v	z	1,5e0	ν	z	1.5e0	. v	z	1.5e0	v	z	1.5e0	v	1.6e0	1.5e0	٧	z	1.5e0	1.5e0
1862-21 1560 C		74-97-5	1.9e0	v	z	1.9e0	v	z	1.9e0	v	z	1.9e0		z	1.9e0	v	1.9e0	1.9e0	v	z	1.9e0	1.9e0
1785-8- 2.280	_	75-27-4	1.5e0	v	z	1.5e0	v	z	1.5e0	v	z	1.5e0	v	z	1.5e0	v	1.6e0	1.5e0	v	z	1.5e0	1.5e0
1968 1280		75-25-2	2.2e0	v	z	2.3e0	v	z	2.3e0	v	z	2.3e0	v	z	2.3e0	v	2.3e0	2.3e0	v	z	2.2e0	2.3e0
1988-198 1.180 1		74-83-9	2.160	7	2 6	2.9e0	7	<u> </u>	1.9e0	Ç.	4	2.6e0	-,	4	2.9e0	7.	3.360	2.9e0	7	۵	2.0e0	2.7e0
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		78-93-3	1.1e1	· ·	a :	1.1e1	Ţ.,	<u> </u>	1.1e1	7.	a. :	1.1e1	v ·	z :	1.1e1	7	1.2e1	1.1e1	v	a.;	1.1e1	1.1e1
1962-06 1789 C		104-51-8	1.960	v ,	z :	1.960	v ,	z :	3.960	,	- ·	1.960	v -	z :	1.990	v ·	096.	1.960	v	z :	1.9e0	1.960
19-25-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2		32-36-8	1.1eU	v v	zz	1. Teb	v v	z z	1.7eC	v v	z z	091.1	v v	z 2	1,190 1,8e0	v v	1.160	1.160	٧ ،	z z	1.1e0	1.1eU
1989-25 1200 C		75-15-0	1 2e1		. 0	15		Δ.	5 6	, ,	α 2 α	2000		2 0	Pag 1	, ,	0.000	1 Set	,		1 401	1 201
174-451 1890 C N 1200 C N 1300 C N 1300 C N 1300 C 190		56-23-5	2.0e0	. ,	. z	2 De0		. 2	2 De0 5	· v	. 2		, ,		- Gel C		190	090.C	, ,	. 0	2 De0	000
1,5,0,2,3 1,5,0,3 2,0,0 2,1,0 2,5,0 2,1,0 2,5,0		108-90-7	1 200		: z	1 200		: 0	1 200		: 2		} ,	. 6	200	, ,	200	1 200	, ,	. 0	200	200
17.6473 3.060		124 40 1	1 900	· ·	: z	1.2ed	? .	LZ	1000		2 2	000	<i>}</i> ,	. 2	000	? ·	090	1000	? \	. 2	1000	1 000
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	Ì	1-0-47	0-0-0	, ;	2 0	-3e0	, ;	z	1.960	,	z			z	Dec.	, ;	nee.	096.	,	z	Oas:	200
17-25-3 1389 C N 1399 C		2-00-3	2.0e0	٠.		Z.beu	- V	<u> </u>	Z.1eU	·	2 (·	·	<u></u>	2.560		2.760	7.6e0	v.	J. 1	2.1e0	7.3en
March Marc		67-66-3	3.0e0	ς.	1	5.160	v	ı.	4.160	v	ري	5.0e0	v		5.1e0	v	5.3e0	5.160	v	۵.	3.6e0	5.0e0
1964-84 736-1	_	74-87-3	1.5e1	_	α.	3.7e1	v	۵.	1.5e1	7	۵.	3.2e1		۰.,	3.7e1	^	4.8e1	3.7e1	v	۵	1.5e1	3.4e1
1964-14 136-14 136-14 146-14	4	95-49-8	7.36-1	v	z	7.56-1	v	z	7.4e-1	v	ν.	.5e-1	v	z	.5e-1	_	.7e-1	7.5e-1	٧	z	7.3e-1	7.5e-1
1967-15 1967	_	106-43-4	7.3e-1	v	z	7.5e-1	v	z	7.4e-1	v	z	.5e-1	v	z	.5e-1	<u>۷</u>	.7e-1	7.5e-1	v	z	7.3e-1	7.56-1
1985 42 2560	_	96-12-8	3.3e0	v	z	3.6e0	v	z	3.5e0	v	رب) ح	3.4e0	v	z	3.6e0	٧	3.7e0	3.6e0	٧	z	3.4e0	3.5e0
1746-53 1240		106-93-4	2.5e0	v	z	2.6e0	v	z	2.5e0	v	2	3.6e0	v	z	2.6e0	v	3.6e0	2.6e0	v	z	2.5e0	2.6e0
94-50-1 1260 C N 1380 C		74-95-3	2.1e0	v	z	2.2e0	·	z	2.1e0	v	N	7.2e0	v	z	7.2e0	v	2.2e0	2.2e0	v	z	2.1e0	2.2e0
1942-14 12.00		95-50-1	2.2e0	v	2	2.3e0	v	z	2.3e0	v	Z	3e0	v	Z	3e0	\ \ \	2.3e0	2.3e0	. *	z	2.2e0	2.3e0
17-54-2 12-20	_	541-73-1	1.2e0	v	z	1.3e0	v	z	1.3e0	·	z	1.3e0	v	z	1.3e0	_	1.3e0	1.3e0	v	z	1.2e0	1.3e0
17-24-2 13-20		106-46-7	1.7e0	v	z	1.8e0	v	z	1.8e0	_	z	0.860	v	z	1.8e0	_	1.8e0	1.8e0	٧	z	1,7e0	1.860
175-35.2 1.980 C N 1.980 C	_	75-71-8	3.2e0	v	_	2.0e0	Ĵ.	۵.	2.5e0	v	2	000.		٠,	3.2e0	٧	3,6e0	3,2e0	٧	Δ	2.9e0	2.0e0
107-28-4 2.060		75-34-3	1.9e0	v	z	1.9e0	v	z	1.9e0	v	z	096	v		.9e0	~	1.9e0	1.9e0	v	z	1.9e0	1.9e0
EFF 525-4 1.56 GA 1.5	•	107-06-2	2.0e0	7.	Δ.	2.0e0	-	Δ.	2.0e0	v	Z	0.00	v		2.000	2	2.1e0	2.0e0	γ,	۵	2.0e0	2.0e0
Fig. 592 1.960 C N 1.960 C N 1.960 C N 1.960 C N 1.960 C N 1.960 C N 1.960 C N 1.760 C 1.760 C		75-35-4	2.0e0	7.	<u>a</u>	2.3e0		Δ.	2.0e0		<u>م</u>		7		360	.7	2.4e0	2.3e0	7	۵	2.0e0	2.2e0
178-045 178-04 N 178-04		156-59-2	1.9e0	· v	z	1.9e0	. v	z	1.9e0	v	z	_	· v		.9e0	· v	.9e0	1.9e0	v	z	1.9e0	1.9e0
17.847-5 1.640		156-60-5	2.1e0	v	z	2.0e0		z	2.0e0	v	2	, 2e0	v	2	2e0	v	2 2eD	2.2eD	v	z	2.1e0	2.160
142,228 22 22 22 22 23 24 24 24		78-87-5	1.6e0	v	z	1.7e0	7.	۵	1.6e0	v	_	.7e0	v	z	. 7e0	Ĵ.	1.7e0	1.7e0	₹.	۵	1.6e0	1.7e0
Colored Colo		142-28-9	2.1e0	٧	z	2.2e0	v	z	2.1e0	v	z	.2e0	v	Z	2e0	v	. 2e0	2.2e0	v	z	2.1e0	2.2e0
10031-01-5 1580		594-20-7	2.0e0	v	z	2.0e0	v	z	2.0e0	v	z	.0e0	v	z	:.0e0	v v	2.1e0	2.0e0	v	z	2.0e0	2.0e0
1004144 1286 C		563-58-6	2.2e0	v	z	2.3e0	v	z	2.3e0	v	Z	.3e0	v	z	3e0	<u>۲</u>	.3e0	2.3e0	v	z	2.2e0	2.3e0
10041-25 1340 C		10061-01-5	1.6e0	v	z	1.7e0	v	z	1.6e0	v	z	.7e0	·	z	1.7e0	<u> </u>	.7e0	1.760	v	z	1.6e0	1.760
12-24 1-24	погоргореле	10061-02-6	1.960	v	z :	1.9e0	v	z	96.	v	z :	.9e0	·	z :	eo	v -	0961	1.9e0	v	z :	1.960	1.960
S91-766 S94-76		41400	1.2e0	\ \	z :	1.2eU	,	z :	1.260	v	z :	760	v :	z :	7.5e0	, ,	.ze0	1.2e0	v	z	1.2eU	1.2eU
1962-6 37-51 37-52 37-		204-70	2.760	v 1	z z	2.8eU	· ·	z 2	7.8eU	v 1	2 2	96.	v ,	Z 2	2.960	v ,	3.0e0	2.960	۷ ،	z	2.7e0	7.9e0
1967-6 1440	_	2000	0.350	, ,		0.0-4	, ,		, oed	, ,	2 2	3 ·	, ,	· (0 .	, ,	Oac.	7. ieu	, .	2 3	7.0e0	G .
15/09-2 12/20 E.B		90-92-0	- 64		z 2	1,400	<i>,</i> ,	2 2	0.0er	· ·	2 2	9,5	v 1	2 2	-86-	v ,	9.	4.450	٧ ،	2 2	5. e-1	00.0
108-101 7.540		75,09.2	2 202	, a	. 4	2.264	, a	2 4	1 464	, a			, =	2 <	And	, ,	200	1 404	,	2	1 464	7 F. F. D.
91-03 2.660		108-10-1	7.300		(Z	7.500	· ·	: 2	7.460		(2		ž v	(Z	o Co	j v	720	0.57	, ,	ζZ	7.360	7.50
100-255-1 3.2-1		91-20-3	2.6e0		z	2.7e0	v	z	2.6e0	~	2	.7e0	v	. N	.7e0	· ~	.7e0	2.7e0	v	z	2.660	2.7e0
400-42-5 376-1 4 100-60 4 1060-6 6 1060-6 6 1060-6 6 1060-6 6 1060-6 7 1060-6 6 1060-6 7 1060-6 </th <th></th> <th>103-65-1</th> <th>8.3e-1</th> <th>v</th> <th>z</th> <th>8.4e-1</th> <th>v</th> <th>z</th> <th>3.3e-1</th> <th>v</th> <th>89 80</th> <th>4e-1</th> <th>v</th> <th>z</th> <th>1-94</th> <th>v 80</th> <th>.5e-1</th> <th>8.4e-1</th> <th>v</th> <th>z</th> <th>8.3e-1</th> <th>8.4e-1</th>		103-65-1	8.3e-1	v	z	8.4e-1	v	z	3.3e-1	v	89 80	4e-1	v	z	1-94	v 80	.5e-1	8.4e-1	v	z	8.3e-1	8.4e-1
vane G202d 1.2e0 c N 1.3e0 c N 2.9e0 c 1.9e0 c		100-42-5	9.7e-1	v	z	1.0e0	v	z	9.8e-1	v	ත z	-9e-1	v	z	.0e0	· v	Oe0	1.0ed	v	z	9.7e-1	1.0e0
177:144 1360		630-20-6	1.2e0	v	z	1.3e0	v	z	1.3e0	·	z	360	v	z	.3e0	٧	.3e0	1.3e0	٧	z	1.260	1.3e0
107-154 1360	ethane	79-34-5	2.7e0	v	z	2.8e0	v	z	2.8e0	_	2 Z	.9e0	v	z	.9e0	۳ v	3.0e0	2.9e0	v	z	2.7e0	2.9e0
106-18-3	proethene	127-18-4	1.9e0	v	z	1.9e0	v	z	1.9e0	v	z	.9e0	v	2	.9e0	v :		1.9e0	v	z	1.9e0	1.9e0
10,000 1		108-88-3	2.480	,	٠:	3.660		٠.:	3.8e0	Ţ.	d :	360	7	Δ ;	.8e0	J.,	.ee0	3.8e0	, ,	۵.	3.1e0	2.9e0
17.082-1 2.740		9/9/9	Z.5eU	v	z :	7.7e0	v	z	7.660	v	z:	, e0	v	z	e0	×	:/e0	2.7e0	v	z	7.6e0	7.760
1,030-0 2,140 N 2,240 N 2,240 N N 2,240 N N 2,240 N	υ	1-29-07L	2.7eU	v ,	z :	Z.8e0	v ,	z :	2.8eU	v ·	2 2	. 3e0	v -	z:	. sed	v '	3.0e0	2.9e0	v	z :	2.760	2.960
79016 2.080	_	900	2.460	v .	z .:	Z.4eU	v	z :	2.460	\ \	2	4e0	v	z :	4e0	, v		2.4eU	v	z	2.4e0	2.460
e 75-894 2.000 0 1	<u></u>	900	2.000	· ·	2 2	2.2e0	, ,	z 2	2.1e0		2 2	007	, ,	2 2	ne c	v ,	200	2.260	٧,	2 2	2.1e0	097.7
1.00	othon	0.00	2.000	, ,	2 0	2000	, .	z 0	2.000	, ,	2 0	200	, <u>.</u>	2 0	2 2	, .	8 5	2.000	, ,	2 0	2.0e0	2000
ne 96-63-6 1.280 c N 1.380 c N 1.380 c N 1.380 c N 1.380 c 1.380		184	3.000	? v	. 2	3.160	? v	. 2	2.0e0	? v	. 2	0	? v	. 2	100	, v	2 9	3.160	? v	. 2	3.000	3 100
108-67-4 7.36-1		95.63.6	1 200	, ,	2	1 300	, ,	2 2	1 3eO	, ,	2 2	300	1	, .	360	/ 1	300	1 300	/ -	2 2	200.5	300
15014 1560 < J P 2.360 < J P 1.560 < J P 2.260 < J P 2.360 < J P 2.360 < J 2.660 Secondary 1.260		108-67-8	7.36-1	· v	: z	7.5e-1		. z	7.4P-1		- ×	7-1-1		. 2	2 4		7 4	7.59-1		2 2	7.38-1	7.56-1
136777-51-2 5.460 < N 5.660 < N 5.560 < N 5.660 < S.760 S.647-6 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660 < S.760 S.660		75-01-4	_	J.	۵.	2.3e0	7,	Δ.	1.5e0	7	2	.2e0 <	Ţ.	P .	.3e0	. 2	.6e0	2.3e0	~	۵.	1.6e0	2.2e0
95-47-6 9.56-1 < N 1.0e0 <,J P 9.8e-1 < N 9.8e-1 <,J P 1.0e0 <,J 1.0e0		36777-61-2	2	v	z	5.6e0	v	z	5.5e0	v	ري ح	.6e0	v	z	.6e0	, 5	.7e0	5.6e0	٧	ż	5.5e0	5.6e0
		95-47-6	9.5e-1	v	z	1.0e0 <	Ľ,	۵	3.8e-1	v	6	8e-1	Γ,	-	.0e0	L.	.0e0	1.0e0	Ľ,	Ь	9.6e-1	9.9e-1

able 0-23. 003 Collicellifation-basis.																					
CAS	STRT-1	F	Project	F-UNH	Т		STRT-2	Н	Project	END.2	Н	Project	orden veld			Doeulte	o#i.	Н	F	STRTRun	END Run
Registry		lag	Specific	na/dscm	lag	Specific	maydscm	lag	Specific	na/dscm	lag	Specific	ma/dscm	lag	lag wosp/on	_	Sign Eight	lag	Specific	Avgs	Avgs
Number			Flag		İ			\dagger			1	Flag			- 1	4	.	_	_	g/dscm	mg/dscm
292-76-7	6.7e-1	Σ	۵.								_		6.7e-1	∑ T Z		6.7		Σ.	_	6.7e-1	
100-47-0				2.4e0	N.C.	a.	9.0e-1	Σ̈́	۵.	6.0e-1	Σ'n	а.	2.4e0	Σ̈́	3.3e0	2.4		Μ'Γ'	۵.	9.0e-1	1.5e0
109-69-3	7.1e-1	Σ̈́	۵										7.1e-1	Σ̈́		7.1		M.C.	_	7.1e-1	
2597-49-1				1.5e0	N,U,N	۵.							1.5e0	Σ Ϋ́		1.5		M,C,1	۵.		1.5e0
4292-75-5	7.3e-1	M,U,M	۵										7.3e-1	Σ'n		7.3		M.Y.	ا ⁻	7.3e-1	
108-87-2		N.U.N	۵	2.6e0	N,U	a.	2.5e0	Ν'n	۵	1.5e0	Σ	۵.	2.6e0	Ν̈́	3.2e0	2.6		M.L.	_	1.9e0	2.0e0
110-83-8		N,U,N	۵	4.6e-1	Z,U,Z	۵.	2.3e0	N.J.	۵.	3.3e-1	N C	a	2.3e0	Σ̈́	2.8e0	2.3		M.C.	۵.	1.7e0	4.0e-1
2452-99-5		_					6.6e-1	N.C.N	۵				6.5e-1	Σ	9.9e-1	6.6		M,L,	<u>a</u>	3.38-1	
822-50-4				1.0e0	N,U,N	۵				3.8e-1	M.L.N	۵	1.0e0	Σ̈́	1.6e0	1.0	L	Σ.	۵		7.0e-1
1640-89-7	3.5e-1	Σ	۵	5.2e-1	Σ'n	۵.	4.5e-1	Ν'n	۵.				5.2e-1	Σ̈́	7.9e-1	5.2		Σ.	<u>م</u>	-9e-1	2.6e-1
124-18-5		N,U,N											1.5e0	N		1.5		M.C.	<u>.</u>	1.5e0	
62237-96-1							7.5e-1	Z, L, X	۵				7.5e-1	N.C.N		7.5		M,U,M	<u>ا</u>	7.5e-1	
1002-17-1	7.9e-1	N,U,M	۵		_			-					7.9e-1	Σ'n		4.9	L	Σ	a.	7.9e-1	
112-40-3		M,L,N	a.	3.3e2	Σ	۵.	2.8e2	M.U.N	۵	2.2e2	Σ'n	۵	3.8e2	Σ̈́	4.5e2	3.8		M,C,	_	3.3e2	2.7e2
6044-71-9					-			M,L,N	۵.				6.5e-1	Σ̈́		6.5		M.C.	<u>د</u>	5.5e-1	
544-76-3				2.7e0	N,J,M	۵							2.7e0	Σ, Z,		2.7		M,U,	۵.		2.7e0
589-43-5		N,U,N	a.	2.3e0	Σ,ς N	_		M.J.N	۵		M,U,X	۵	2.5e0	Σ'n	3.2e0	5.5		M,C,	٠	1.9e0	1.7e0
591-76-4	2.1e0	Ν̈́	۵.	4.0e0	∑,'Z	۵	3.8e0	N,U,N	۵	3.1e0	M,U,N	۵	4.0e0	Σ	4.9e0	4.0		M,C,	۵.	2.9e0	3.5e0
589-34-4		N.J.N	۵.	9.7e0	Σ	Δ.		M,U,N	۵		N,U,M	۵	9.7e0	Σ̈́	1.1e1	9.7		Μ'Γ'	٠	4.0e0	7.0e0
76-06-2			_	4.6eD	N.L.N	۵							4.6e0	Σ'n		4.6		Μ'?'	۵.		4.6e0
111-65-9	3.3e-1	N,J,M	۵					-					3.3e-1	∑ ⊃ʻz		3.3		M,U,	۳	3.3e-1	
565-59-3		N,C,N	۵	4.0e-1	N C	۵	1.460	M.J.M	۵.	1.8e0	Σ̈́	۵.	2.2e0	N,U,M	3.De0	2.2		M,U,	<u>.</u>	1.8e0	1.1e0
562-49-2				7.5e-1	N,C	<u> </u>							7.56-1	∑ T X	9.4e-1	7.5		M.C.	۵		3.8e-1
617-78-7								M,U,M	D.		M,U,N	۵	4.3e-1	Ν'n	6.9e~1	4.3		M.L.	<u>-</u>	2.1e-1	2.0e-1
629-59-4		Σ, Σ,	۵	1.3e1	Z,	۵		M,U,N	۵		M.U.N	۵.	1.8e1	M,U,M	2.5e1	1.8		M,U,	<u>.</u>	6.8e0	1.5e1
629-50-5		Z,		4.0e1	N,U	a.		M'C'N	۵.		Σ, Σ,	۵.	4.0e1	Σ'n	6.6e1	4.0		M.U.	_	1.8e1	4.0e1
1120-21-4		N,J,N	Δ	6.4e0	N,U,N	Δ.		M,U,N	۵		Σ,U,N	۵	1.2e1	Σ'C'X	1.5e1	1.2		W.C.	۵.	7.7e0	4.0e0
17301-23-4	1.4e0	N,U,N					5.8e-1	N,J,M	۵	1.1e0	N.J.M	o.	1.4e0	N,U,M	1.8e0	1.460	i	N.J.N	_	9.7e-1	1.1e0
1632-70-8		M.J.M	۵	2.3e0	N,J,M	۵		M,U,M	а		N.C.N	۵.	7.9e0	N,U	9.3e0	7.9		M.C.	۵	5.3e0	2.3e0
											l		l	I			l	l			l

Table B-23, 0031

Table B-24. 0050 concentration-basis.

	END Run Avgs ppmv, dry	6.0e-1	4.5e-2	mg/dscm	5.6e-1
	STRT Run Avgs ppmv, dry	6.3e-1	3.2e-2	mg/dscm	7.4e-1
	Flag	m	В		В
	Results ppmv, dry	6.4e-1	5.7e-2	mg/dscm	1.1e0
	Avg+2a <u>H</u> ppmv, dry ©	6.7e-1	6.4e-2	mg/dscm	1.5e0
	Flag	В	В		മ
	Max value ppmv, dry	6.4e-1	5.7e-2	mg/dscm	1.1e0
	Flag	В	>		В
	END-2 ppmv, dry	6.2e-1	3.2e-2	mg/dscm	2.6e-1
	Flag	В	v		
	STRT-2 ppmv, dry	6.4e-1	3.2e-2	mg/dscm	3.7e-1
	Flag	В	В		В
	END-1 ppmv, dry	5.7e-1	5.7e-2	mg/dscm	8.6e-1
3	Flag	В	٧		В
	STRT-1 THE PPMV, dry Eq.	6.1e-1	3.1e-2	mg/dscm	1.1e0
ימפוס בו: ססס כסווסטווות בו	Analyte	Chloride (as HCI)	Chloride (as CI2)	Particulate	

•
$\overline{}$
S
2
\sim

	CAS	CTDT 4	F	Project	ENID 4	-	Project	CTOTO	⊢	Project		-	Project ,	Annual	F		L	F	Project	STRT	END Run
Analyte	Registry	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	lag	Specific		lag	Specific	2-1 V 1 C	lag			ဟ lag	Specific	iviak value	la	1ac 07+6AY		la	Specific	Run Avgs	Avgs
	Number	ng/ga	9	Flags	linen/fin]	Flags	ng/nsn/hd		Flags	nasp/6d		Flags	ng/usciii	9	hg/dscill	mosp/fir	9	Flag	mg/dscm	ug/dscm
Aluminum (AI)	7429-90-5	4.6e1		٧	7.4e1	l	۷	2.3e1	H	4	2.4e1	-	٧	7.4e1	-	9.0e1	7.4e1		۷	3.4e1	4.9e1
Antimony (Sb)	7440-36-0	1.5e0	8	∢	1.4e0	В	∢	1.4e0	B	<	1.3e0	<u>в</u>	∢	1,5e0	ω	1.5e0	1.5e0		∢	1.4e0	1.4e0
Arsenic (As)	7440-38-2	5.2e-1	۸ آ	۵	4.4e-1	٧	z	4.9e-1	٧	z	5.2e-1	v	z	5.2e-1	N B	5.7e-1	5.2e-1		۵	5.1e-1	4.8e-1
Barium (Ba)	7440-39-3	2.2e0	ω	∢	2.7e0	ω,	∢	1.6e0	<u> </u>	∢	1.5e0	ω	∢	2.7e0	œ	3.2e0	2.7e0		∢	1.9e0	2.1e0
Beryllium (Be)	7440-41-7	2.1e-1	ν, Β	Δ	1.8e-1	۸ B	۵	2.0e-1	a, B	۵	2.1e-1	A B	Д	2.1e-1	A B	2.3e-1	2.1e-1		۵	2.1e-1	2.0e-1
Cadmium (Cd)	7440-43-9	1.5e-1	ш	∢	2.2e-1	Ф	∢	8.2e-2	A,B	Δ.		v	z	2.2e-1	æ	2.7e-1	2.2e-1		۵.	1.2e-1	1.6e-1
Chromium (Cr)	7440-47-3	9.8e-1		∢	1.3e0		∢	7.6e-1		<	1.7e0		∢	1.7e0	,	2.0e0	1.7e0		∢	8.7e-1	1.5e0
Cobalt (Co)	7440-48-4	8.8e-1	Ф	∢	7.4e-1	v	z	8.2e-1	v	z	8.8e-1	v	z	8.8e-1	В	9.7e-1	8.8e-1		۵	8.5e-1	8.1e-1
Copper (Cu)	7440-50-8	1.4e0	В	4	9.9e-1	æ	∢	7.0e-1	В	∢	i	A B	۵	1.4e0	æ	1.7e0	1.4e0		۵	1.1e0	7.2e-1
Lead (Pb)	7439-92-1	4.3e-1	N N	α.	3.6e-1	æ	∢	4.3e-1	, B	Δ.		A,	۵	4.3e-1	v, B	4.7e-1	4.3e-1		۵	4.3e-1	3.7e-1
Manganese (Mn) 7439-96-5	7439-96-5	6.2e0		∢	6.3e0		∢	1.2e1		<	2.4e1		<	2.4e1		2.8e1	2.4e1		∢	8.9e0	1.5e1
Mercury (Hg)	7439-97-6	3.3e1		∢	4.1e1		<u>a</u>	3.4e1		<u> </u>	3.6e1		۵	4.1e1		4.3e1	4.1e1		۵	3.3e1	3.9e1
Nickel (Ni)	7440-02-0	1.6e0	æ	∢	1.6e0	В	4	1.4e0	В	∢	1.3e0	മ	٧	1.6e0	В	1.8e0	1.6e0		∢	1.5e0	1.5e0
Selenium (Se)	7782-49-2	1.0e0	Ω	∢	5.7e-1	v	۵	7.9e-1	ω	∢	7.5e-1	മ	∢	1.0e0	В	1.2e0	1.0e0		۵	9.2e-1	6.6e-1
Silver (Ag)	7440-22-4	8.5e-1	٧	z	7.1e-1	v	z	7.9e-1	٧	z	8.5e-1	v	z	8.5e-1	٧	9.3e-1	8.5e-1		z	8.2e-1	7.8e-1
Thallium (TI)	7440-28-0	8.2e-1	٧	z	6.6e-1	v	z	7.6e-1	٧	z	7.8e-1	,v	z	8.2e-1	٧	8.9e-1	8.2e-1		z	7.9e-1	7.2e-1
Vanadium (V)	7440-62-2	8.8e-1	٧	z	7.4e-1	v	z	8.2e-1	v	z	8.8e-1	v	z	8.8e-1	٧	9.7e-1	8.8e-1		z	8.5e-1	8.1e-1
Zinc (Zn)	7440-66-6	2.0e1		∢	3.3e1		⋖	9.1e0		<	5.6e0		∢	3.3e1		4.1e1	3.3e1		∢	1.5e1	1.9e1
Total Metals															1		1.9e2				

Hg/dscm 4.6e1 3.0e-1 2.6e-1 7.8e-1 1.4e-1 1.4e-1 7.2e-1 7.2e-1 3.9e-1 3.9e-1 7.8e-1 7.8e-1 7.8e-1 7.8e-1 7.8e-1 8.1e-1 8.1e-1 8.1e-1 1.4e-1 1.7e-1 1. 3.2e1 3.2e1 3.1e-1 2.7e-1 4.3e-1 1.4e-1 9.8e-2 2.9e-1 8.5e-1 1.1e0 2.9e-1 8.4e0 3.3e1 3.2e-11 8.2e-1 7.9e-1 8.5e-1 Project Specific Flag < < a < | a a < a | a a < a | < a z z | z < Flag Results µg/dscm 7.0e1 4.2e-1 2.8e-1 1.5e-1 1.1e0 8.8e-1 1.4e0 3.3e-1 7.0e-1 7.0e-1 3.3e-1 3.3e-1 7.0e-1 3.3e-1 7.0e-Flag Avg+2σ μg/dscm 1.6e-1 2.5e-1 1.4e0 9.7e-1 1.7e0 3.2e-1 2.7e1 4.3e1 3.6e-1 9.4e-1 9.7e-1 8.5e1 5.1e-1 3.1e-1 1.9e0 m v m v m а а <u>«</u> മെമ Flag Max value ng/dscm 7.0e-1 3.3e-11 8.5e-1 8.2e-1 8.8e-1 3.1e1 7.0e1 4.2e-1 2.8e-1 1.5e0 1.1e0 8.8e-1 1.4e0 3.3e-1 4.1e1 Project Specific Flags < | A Z < Z | A A A A A A A Z Z | Z < ^ A A A Flag ш v ш м v END-2 2.1e-1 3.3e-11 8.5e-1 7.8e-1 8.8e-1 4.1e0 ng/dscm 2.2e1 1.8e-1 2.8e-1 1.5e-1 6.9e-2 1.1e0 8.8e-1 4.5e-1 2.5e-1 3.6e1 Project Specific Flags a < z < a AUAAZ Λ B Å ш ∧ ш х м ш м Flag 3.2e-1 3.0e-11 ng/dscm STRT-2 6.4e-2 2.0e-1 8.2e-1 6.9e-1 3.0e-1 3.4e1 8.0e-1 7.6e-1 2.1e1 2.9e-1 2.6e-1 1.6e-1 1.4e-1 Project Specific Flag ω ν ω <mark>ν</mark> ω mg/dscm END-1 7.0e1 4.2e-1 1.5e0 1.2e-1 7.9e-1 7.9e-1 9.9e-1 9.9e-1 7.0e-1 7.0e-1 7.0e-1 7.0e-1 7.0e-1 7.6e-1 7.0e-1 7.6e-1 7.0e-1 7.6e-1 7.0e Project Specific Table B-26. 0060 blank corrected concentration-basis ന ∧ ന ∧ ന ന് വ സ് വ 8 8 v mm v v Flag STRT-1 5.0e-1 3.3e-11 ng/dscm 4.2e1 3.4e-1 2.8e-1 7.0e-1 1.5e-1 2.8e-1 5.7e0 3.3e1 8.5e-1 3.8e-1 8.8e-1 1.4e0 7440-48-4 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-36-0 7440-38-2 7440-31-3 7440-41-7 7440-43-9 7440-47-3 7440-62-2 7440-66-6 CAS Registry Cobalt (Co)
Copper (Cu)
Lead (Pb)
Manganese (Mn)
Mercury (Hg)
Nickel (Ni)
Selenium (Se) Aluminum (Al)
Antimony (Sb)
Arsenic (As)
Barium (Ba)
Beryllium (Be)
Cadmium (Cd)
Chromium (Cr) Silver (Ag) Thallium (Tl) Vanadium (V) Analyte **Fotal Metals** Zinc (Zn)

Total Detected Metals

APPENDIX C

PROCESS STREAM SAMPLING DATA

Table C-1. VOC target analyte list reported by the INTEC ALD.

CAS#	Compound	CAS#	Compound
74-87-3	Chloromethane	79-01 - 6	Trichloroethene
75-01-04	Vinyl Chloride	78-87 - 5	1,2-Dichloropropane
74-83-9	Bromomethane	75-27-4	Bromodichloromethane
75-00-3	Chloroethane	10061-01-5	Cis-1,3-dichloropropene
75-69-4	Trichlorofluoromethane	108-10-1	4-Methyl-2-pentanone
75-35-4	1,1-Dichloroethene	108-88-3	Toluene
76-13-1	1,1,2-Trichloro-1,2,2-	10061-02-6	Trans-1,3-dichloropropene
	trifluoroethane		
75-15-0	Carbon disulfide	79-00-5	1,1,2-Trichloroethane
67-64-1	Acetone	127-18-4	Tetrachloroethene
75-09-2	Methylene chloride	591-78-6	2-Hexanone
	(Dichloromethane)		
156-60-5	Trans-1,2-dichloroethene	124-48-1	Dibromochloromethane
75-34-3	1,1-Dichloroethane	108-90-7	Chlorobenzene
156-59-2	Cis-1,2-dichloroethene	100-41-4	Ethylbenzene
78-93-3	2-Butanone	108-38-3	M-xylene and 106-42-3 p-xylene
67-66-3	Chloroform	95-47-6	O-xylene
71-55-6	1,1,1-Trichloroethane	100-42-5	Styrene
56-23-5	Carbon tetrachloride	75-25-2	Bromoform
71-43-2	Benzene	79-34-5	1,1,2,2-Tetrachloroethane
107-06-2	1,2-Dichloroethane		

Table C-2. SVOC target analyte list reported by the INTEC ALD.

CAS#	Compound	CAS#	Compound
62-75-9	N-Nitrosodimethylamine	83-32-9	Acenaphthene
110-86-1	Pyridine	51-28-5	2,4-Dinitrophenol
108-95-2	Phenol	100-02-7	4-Nitrophenol
111-44-4	bis(2-Chloroethyl)ether	132-64-9	Dibenzofuran
95-57 - 8	2-Chlorophenol	121-14-2	2,4-Dinitrotoluene
541-73-1	1,3-Dichlorobenzene	84-66-2	Diethylphthalate
106-46-7	1,4-Dichlorobenzene	7005-72-3	4-Chlorophenyl-phenylether
95-50-1	1,2-Dichlorobenzene	86-73-7	Fluorene
95-48-7	2-Methylphenol	100-01-6	4-Nitroaniline
108-60-1	bis(2-Chloroisopropyl)ether	534-52-1	4,6-Dinitro-2-methylphenol
106-44-5	3 & 4-Methylphenol	86-30-6	N-Nitrosodiphenylamine
621-64-7	N-Nitroso-di-n-propylamine	126-73-8	Tri-n-butyl phosphate
67-72-1	Hexachloroethane	103-33-3	Azobenzene
98-95-3	Nitrobenzene	101-55-3	4-Bromophenyl-phenylether
78-59-1	Isophorone	118-74-1	Hexachlorobenzene
88-75-5	2-Nitrophenol	87-86-5	Pentachlorophenol
105-67-9	2,4-Dimethylphenol	85-01-8	Phenanthrene
111-91-1	bis(2-Chloroethoxy)methane)	120-12-7	Anthracene
120-83-2	2,4-Dichlorophenol	86-74-8	Carbazole
120-82-1	1,2,4-Trichlorobenzene	84-74-2	Di-n-butylphthalate
91-20-3	Naphthalene	206-44-0	Fluoranthene
106-47-8	4-Chloroaniline	129-00-0	Pyrene
87-68-3	Hexachlorobutadiene	85-68-7	Butylbenzylphthalate
59-50-7	4-Chloro-3-methylphenol	91-94-1	3,3'-Dichlorobenzidine
91-57-6	2-Methylnaphthalene	218-01-9	Chrysene
77-47-4	Hexachlorocyclopentadiene	56-55-3	Benzo(a)anthracene
88-06-2	2,4,6-Trichlorophenol	117-81-7	bis(2-Ethylhexyl)phthalate
95-95-4	2,4,5-Trichlorophenol	117-84-0	Di-n-octylphthalate
91-58-7	2-Chloronaphthalene	205-99-2	Benzo(b)fluoranthene
88-74-4	2-Nitroaniline	207-08-9	Benzo(k)fluoranthene
131-11-3	Dimethylphthalate	50-32-8	Benzo(a)pyrene
606-20-2	2,6-Dinitrotoluene	193-39-5	Indeno(1,2,3-cd)pyrene
208-96-8	Acenaphthylene	53-70-3	Dibenzo(a,h)anthracene
99-09-2	3-Nitroaniline	191-24-2	Benzo(g,h,I)perylene

FEED SAMPLES ANALYSIS REPORTS

F I N A L R E P O R T for 150WM:181 198

Log Type: ** RCRA - PLANT **

Log Number : 00-09272 Phone Number : 6-3226 Report for : NWCFMailstop : 5116

Date Approved : Feb 21 2001 Time Approved : 09:01 Date Received : Sep 27 2000

Time Received : 10:38

GWA charged : 561211110 Reviewed by BRIAN STORMS

MSA mR/hr : ? Signature _____

Hazard Index : >1E4 Lab QC/QA reviewed by

Signature ____ PCBs >50 ppm : NO

COMMENTS:

Lab Field
Analysis Spl ID Spl ID Method Analyst Results

Total Sr 0CD15 150WM/NEOPRENE 23381 BJS 7.549E+05 +- 4.0E+03 D/S/ML
Tritium 0CD15 150WM/NEOPRENE 33011 WDT 5.85E+02 +- 5.0E+01 D/S/ML
End of Report -- 2 results.

F I N A L R E P O R T for 150FEED:103 198/181

Log Type: ** PLANT **

Log Number : 00-09274 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Feb 20 2001 Time Approved : 10:11 Date Received : Sep 27 2000

Time Received : 11:11

Reviewed by TIFFANY PARK GWA charged : 561211110

Signature ____ MSA mR/hr : COLD

Hazard Index : <1E4 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature _____

	Lab	Field		
Analysis	Spl ID	Spl ID	Method Analyst Results	
				-
Acid	0CD21	150WM/NEOPRENE	57012 RAH 1.564E+00 +- 8.8E-02 Normal Aci	ıd
Aluminum	0CD25	FEED150/PLASTIC	87100 BCS 2.209E-01 +- 3.2E-03 MOLAR	
Boron	0CD25	FEED150/PLASTIC	87100 BCS 1.30E-02 +- 2.9E-03 MOLAR	
Cadmium	0CD25	FEED150/PLASTIC	87100 BCS 4.11E-03 +- 8.8E-04 MOLAR	
Calcium	0CD25	FEED150/PLASTIC	87100 BCS 4.376E-02 +- 7.4E-04 MOLAR	
Chloride	0CD21	150WM/NEOPRENE	57171 AWO 6.34E+02 +- 2.0E+01 ug/mL	
Chromium	0CD25	FEED150/PLASTIC	87100 BCS 2.75E-03 +- 7.0E-04 MOLAR	
Co60	0CD21	150WM/NEOPRENE	83993 SJH 2.61E+03 +- 1.3E+02 d/s/ml	
Cs134	0CD21	150WM/NEOPRENE	83993 SJH 2.61E+03 +- 1.4E+02 d/s/ml	
Cs137	0CD21	150WM/NEOPRENE	83993 SJH 9.56E+05 +- 3.5E+04 d/s/ml	
Eu154	0CD21	150WM/NEOPRENE	83993 SJH 7.91E+03 +- 5.0E+02 d/s/ml	
Eu155	0CD21	150WM/NEOPRENE	83993 SJH 1.79E+03 +- 2.2E+02 d/s/ml	
Fluoride	0CD21	150WM/NEOPRENE	57093 BCS	
Iron	0CD25	FEED150/PLASTIC	87100 BCS 1.13E-02 +- 1.4E-03 MOLAR	
Mercury	0CD25	FEED150/PLASTIC	87802 RDW 3.98E+02 +- 2.5E+01 ug/ml	
NB94	0CD21	150WM/NEOPRENE	83993 SJH 1.17E+02 +- 1.2E+01 d/s/ml	
Nitrate	0CD21	150WM/NEOPRENE	97074 BCS 2.839E+00 +- 2.7E-02 Molar	
Potassium	0CD25	FEED150/PLASTIC	12800 SDN 3.21 E+04 ug/mL	
Sodium	0CD25	FEED150/PLASTIC	12800 SDN 1.31 E+05 ug/mL	
SpGr	0CD21	150WM/NEOPRENE	47981 AWO 1.16019E+00 +- 2.7E-04 @ 25/4	
Sulfate	0CD21	150WM/NEOPRENE	97168 BCS 3.04E+03 +- 8.4E+02 ug/ml	
Uranium PreP	0CD21	150WM/NEOPRENE	17929 BGP 1.0E+00 ml	
Zirconium	0CD25	FEED150/PLASTIC	87100 BCS 5.3E-03 +- 2.9E-03 MOLAR	
Zr95	0CD21	150WM/NEOPRENE	83993 SJH 4.63E+02 +- 3.4E+01 d/s/ml	
End of Report	24 r	esults.		

FINAL REPORT for 150FEED:103 199

Log Number : 00-10022 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Mar 28 2001 Time Approved : 10:26 Date Received : Oct 12 2000

Time Received : 15:33

Reviewed by KIMBERLY HONAS GWA charged : 561211290

MSA mR/hr : CELL Signature _____

Lab QC/QA reviewed by Hazard Index : 1E8

Signature _____ PCBs >50 ppm : NO

	Lab	Field	
Analysis	Spl ID	Spl ID	Method Analyst Results
Acid	0CD94	FEED150/NEOPRENE	57012 AWO 1.596E+00 +- 8.8E-02 Normal Acid
Aluminum		FEED150/PLASTIC	87100 NWJ 2.189E-01 +- 6.3E-03 MOLAR
Boron	0CD95	FEED150/PLASTIC	87100 NWJ 1.34E-02 +- 2.9E-03 MOLAR
Cadmium		FEED150/PLASTIC	87100 NWJ 4.26E-03 +- 8.8E-04 MOLAR
Calcium	0CD95	FEED150/PLASTIC	87100 NWJ 4.526E-02 +- 7.4E-04 MOLAR
Chloride	0CD94	FEED150/NEOPRENE	57171 AWO 4.15E+02 +- 1.7E+01 ug/mL
Chromium	0CD95	FEED150/PLASTIC	87100 NWJ 2.52E-03 +- 7.0E-04 MOLAR
Co60	0CD94	FEED150/NEOPRENE	93993 SJH 2.40E+03 +- 2.0E+02 d/s/ml
Cs134	0CD94	FEED150/NEOPRENE	93993 SJH 2.35E+03 +- 1.4E+02 d/s/ml
Cs137	0CD94	FEED150/NEOPRENE	93993 SJH 9.64E+05 +- 5.5E+04 d/s/ml
Eul54	0CD94	FEED150/NEOPRENE	93993 SJH 8.28E+03 +- 8.1E+02 d/s/ml
Eu155	0CD94	FEED150/NEOPRENE	93993 SJH 1.67E+03 +- 2.4E+02 d/s/ml
Fluoride	0CD94	FEED150/NEOPRENE	57093 BGP 2.594E+03 +- 3.8E+01 ug/mL
Iron	0CD95	FEED150/PLASTIC	87100 NWJ 1.21E-02 +- 1.4E-03 MOLAR
Mercury	0CD95	FEED150/PLASTIC	87802 BET 2.05E+02 +- 2.6E+01 ug/ml
NB94	0CD94	FEED150/NEOPRENE	93993 SJH 1.140E+02 +- 9.9E+00 d/s/ml
Nitrate	0CD94	FEED150/NEOPRENE	97074 BET 3.111E+00 +- 2.7E-02 Molar
Potassium	0CD95	FEED150/PLASTIC	12800 RHH 4.86E+03 ug/mL
Sb125	0CD94	FEED150/NEOPRENE	93993 SJH 1.85E+03 +- 1.8E+02 d/s/ml
Sodium	0CD95	FEED150/PLASTIC	12800 RHH 1.95E+04 ug/mL
SpGr	0CD94	FEED150/NEOPRENE	47981 AWO 1.15490E+00 +- 2.7E-04 @ 25/4
Sulfate	0CD94	FEED150/NEOPRENE	97168 BET 3.43E-02 +- 8.7E-03 molar
Uranium	0CD94	FEED150/NEOPRENE	17920 RAH 7.5E-02 +- 1.4E-02 G/L
Zirconium	0CD95	FEED150/PLASTIC	87100 NWJ 5.4E-03 +- 2.9E-03 MOLAR
		FEED150/NEOPRENE	93993 SJH 4.27E+02 +- 5.2E+01 d/s/ml
End of Report	25 r	esults.	

FINAL REPORT for 150WM:181 199

Log Type: ** RCRA - PLANT **

Log Number : 00-100415 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Received : Oct 05 2000

Date Approved : Feb 21 2001 Time Approved : 09:00 Time Received : 11:35

GWA charged : 591211290

MSA mR/hr : HOT

Reviewed by BRIAN STORMS

Hazard Index : >1E4 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature

COMMENTS:

Lab Field

Analysis Spl ID Spl ID Method Analyst Results

Signature _____

Total Sr 0CF26 150WM/NEOPRENE 23381 BJS 8.983E+05 +- 4.3E+03 D/S/ML
Tritium 0CF26 150WM/NEOPRENE 33011 WDT 5.71E+02 +- 4.9E+01 D/S/ML
End of Report -- 2 results.

FINAL REPORT for 150WM:181 200

Log Type: ** RCRA - PLANT **

Log Number : 00-10164 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Feb 21 2001 Time Approved : 08:59 Date Received : Oct 17 2000

Time Received: 17:04

Reviewed by BRIAN STORMS GWA charged : 561211290

Signature ____ MSA mR/hr : CELL

Hazard Index : 1E8 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature ____

COMMENTS:

Analysis Sp1 ID Sp1 ID Method Analyst Results

Total Sr 0CG62 WM181/NEOPREN 23381 BJS 7.656E+05 +- 4.3E+03 D/S/ML

Tritium 0CG62 WM181/NEOPREN 33011 WDT 4.66E+02 +- 4.0E+01 D/S/ML

End of Report -- 2 results.

FINAL REPORT for 150FEED:103 200

Log Type: ** PLANT **

Log Number : 00-10167 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Nov 02 2000 Time Approved : 10:54 Date Received : Oct 17 2000

Time Received: 05:53

GWA charged : 561211290 Reviewed by JEFF LAUG

MSA mR/hr : COLD Signature ____

Lab QC/QA reviewed by Hazard Index : <1E4

Signature _____ PCBs >50 ppm : NO

	Lab	Field			
Analysis	Spl ID	Spl ID	Method	Anal	yst Results
Acid	0CG70	103	57012	RAH	1.633E+00 +- 8.8E-02 Normal Acid
Aluminum	0CG70	103	87100	BCS	2.127E-01 +- 6.3E-03 MOLAR
		0CG74	87100	LWN	2.341E-01 +- 6.2E-03 MOLAR
Boron	0CG70	103	87100	LWN	1.37E-02 +- 2.8E-03 MOLAR
Cadmium	0CG70	103	87100	LWN	4.20E-03 +- 8.7E-04 MOLAR
Calcium	0CG70	103	87100	LWN	4.684E-02 +- 7.3E-04 MOLAR
Chloride	0CG70	103	57171	RAH	4.15E+02 +- 1.1E+01 ug/mL
Chromium	0CG70	103	87100	LWN	2.84E-03 +- 6.9E-04 MOLAR
Co60	0CG70	103	93993	SJH	2.32E+03 +- 1.9E+02 d/s/ml
Cs134	0CG70	103	93993	SJH	2.39E+03 +- 1.4E+02 d/s/ml
Cs137	0CG70	103	93993	SJH	9.69E+05 +- 5.7E+04 d/s/ml
Eu154	0CG70	103	93993	SJH	7.28E+03 +- 8.5E+02 d/s/ml
Eu155	0CG70	103	93993	SJH	1.67E+03 +- 2.3E+02 d/s/ml
Fluoride	0CG70	103	57093	BCS	1.543E+03 +- 8.4E+01 ug/mL
Iron	0CG70	103	87100	LWN	1.29E-02 +- 1.4E-03 MOLAR
Mercury		0CG74	87802	RAH	1.21E+02 +- 2.7E+01 ug/ml
NB94	0CG70	103	93993		1.38E+02 +- 1.4E+01 d/s/ml
Nitrate	0CG70	103	97074	BGP	3.222E+00 +- 2.7E-02 Molar
Potassium		0CG74			4.97E+03 ug/mL
Sb125	0CG70	103			1.36E+03 +- 1.2E+02 d/s/ml
Sodium		0CG74	12800		1.96E+04 ug/mL
SpGr	0CG70	103	47981		1.15786E+00 +- 2.7E-04 @ 25/4
Sulfate	0CG70	103	97168	BGP	3.70E+03 +- 8.5E+02 ug/ml
Uranium	0CG70	103	17920		7.4E-02 +- 1.4E-02 G/L
Zirconium	0CG70	103	87100		5.3E-03 +- 2.8E-03 MOLAR
Zr95	0CG70	103	93993	SJH	4.49E+02 +- 5.2E+01 d/s/ml
End of Report	26 r	esults.			

FINAL REPORT for 150FEED:184

Log Type: ** PLANT **

Log Number : 01-04103 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Apr 24 2001 Time Approved : 15:44 Date Received : Apr 10 2001

Time Received : 13:42

GWA charged : 561211290 Reviewed by KIMBERLY HONAS

MSA mR/hr : HOT Signature ____

Lab QC/QA reviewed by Hazard Index : <1E4

Signature _____ PCBs >50 ppm : NO

	Lab	Field	
Analysis	Spl ID	Spl ID	Method Analyst Results
Acid	1AU03	FEED150/NEOPRENE	57012 RAH 1.842E+00 +- 5.5E-02 Normal Acid
Aluminum	1AU03	FEED150/NEOPRENE	87100 RAH 5.26E-01 +- 2.4E-02 MOLAR
Boron	1AU04	FEED150/PLASTIC	87100 RAH 7.6E-03 +- 1.4E-03 MOLAR
Cadmium	1AU04	FEED150/PLASTIC	87100 RAH < 9.47983E-04 MOLAR
	1AU04	FEED150/PLASTIC	87100 RAH 1.618E-02 +- 3.8E-04 MOLAR
Calcium		FEED150/PLASTIC FEED150/NEOPRENE	57171 RAH 9.77E+02 +- 1.8E+01 ug/mL
Chloride	1AU03		
Chromium	1AU04	FEED150/PLASTIC	87100 RAH 1.69E-03 +- 4.7E-04 MOLAR
Co57	1AU03	FEED150/NEOPRENE	43993 MLE 1.171E+04 +- 7.2E+02 pC/ml
C060	1AU03	FEED150/NEOPRENE	43993 MLE 1.357E+04 +- 6.0E+02 pC/ml
Cs137	1AU03	FEED150/NEOPRENE	43993 MLE 1.280E+07 +- 2.8E+05 pC/ml
Eu154	1AU03	FEED150/NEOPRENE	43993 MLE 2.99E+04 +- 3.5E+03 pC/ml
Fluoride	1AU03	FEED150/NEOPRENE	57093 BGP 5.52E+02 +- 4.3E+01 ug/mL
Iron	1AU04	FEED150/PLASTIC	87100 RAH 1.422E-02 +- 8.5E-04 MOLAR
Mercury	1AU04	FEED150/PLASTIC	87802 RDW 1.50E+02 +- 1.2E+01 ug/ml
Nitrate	1AU03	FEED150/NEOPRENE	97074 BCS 3.91E+00 +- 1.2E-01 Molar
PREP	1AU03	FEED150/NEOPRENE	17961 BCS Prep Completed 2001-04-12 10:07
Potassium	1AU04	FEED150/PLASTIC	12800 SDN 3.50 E+03 ug/mL
Sodium	1AU04	FEED150/PLASTIC	12800 SDN 3.04 E+04 ug/mL
SpGr	1AU03	FEED150/NEOPRENE	47981 RAH 1.22196E+00 +- 3.7E-04 @ 25/4
Sulfate	1AU03	FEED150/NEOPRENE	97168 BCS 1.56E+03 +- 1.0E+02 ug/ml
Uranium	1AU03	FEED150/NEOPRENE	17920 RAH 4.41E-02 +- 1.7E-03 G/L
Zirconium	1AU04	FEED150/PLASTIC	87100 RAH < 2.78182E-03 MOLAR
		esults.	

F I N A L R E P O R T for 150FEED:184 281

Log Type: ** PLANT **

Log Number : 01-04125 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 01 2001 Time Approved : 08:15 Date Received : Apr 13 2001

Time Received : 00:15

Reviewed by TIFFANY PARK GWA charged : 561211290

Signature _____ MSA mR/hr : COLD

Hazard Index : <1E4 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature _____

	Lab	Field	
Analysis	Spl ID	Spl ID	Method Analyst Results
n = 2 = 3	1 71100	FEED150/NEOPRENE	57012 RDW 1.823E+00 +- 1.9E-02 Normal Acid
Acid	1AU88	· ·	87100 BCS 5.37E-01 +- 2.0E-02 MOLAR
Aluminum	1AU89	FEED150/PLASTIC	
	1AU89	FEED150/PLASTIC	87100 BCS > 1.34297E-01 MOLAR
Boron	1AU89	FEED150/PLASTIC	87100 BCS 8.2E+01 +- 1.5E+01 UG/ML
Cadmium	1AU89	FEED150/PLASTIC	87100 BCS < 1.06553E+02 UG/ML
Calcium	1AU89	FEED150/PLASTIC	87100 BCS 6.53E+02 +- 1.5E+01 UG/ML
Chloride	1AU88	FEED150/NEOPRENE	57171 BCS 9.87E+02 +- 1.8E+01 ug/mL
Chromium	1AU89	FEED150/PLASTIC	87100 BCS 8.6E+01 +- 2.4E+01 UG/ML
Co60	1AU88	FEED150/NEOPRENE	83993 SJH 1.710E+07 +- 8.5E+05 pC/l
Cs134	1AU88	FEED150/NEOPRENE	83993 SJH 5.46E+06 +- 3.2E+05 pC/l
Cs137	1AU88	FEED150/NEOPRENE	83993 SJH 1.424E+10 +- 4.6E+08 pC/l
Eu154	1AU88	FEED150/NEOPRENE	83993 SJH 3.19E+07 +- 2.5E+06 pC/l
Fluoride	1AU88	FEED150/NEOPRENE	57093 AWO 4.90E+02 +- 4.1E+01 ug/mL
Iron	1AU89	FEED150/PLASTIC	87100 BCS 7.72E+02 +- 4.8E+01 UG/ML
Mercury	1AU89	FEED150/PLASTIC	87802 RDW 1.27E+02 +- 1.2E+01 ug/ml
Nitrate	1AU88	FEED150/NEOPRENE	97074 BCS 3.89E+00 +- 1.2E-01 Molar
Potassium	1AU89	FEED150/PLASTIC	12800 RHH 3.44E+03 ug/mL
Sodium	1AU89	FEED150/PLASTIC	12800 RHH 3.02E+04 ug/mL
SpGr	1AU88	FEED150/NEOPRENE	47981 BCS 1.22008E+00 +- 3.7E-04 @ 25/4
Sulfate	1AU88	FEED150/NEOPRENE	97168 BCS 8.4E+02 +- 1.1E+02 ug/ml
Uranium	1AU88	FEED150/NEOPRENE	17920 BCS 4.40E-02 +- 1.7E-03 G/L
		FEED150/PLASTIC	87100 BCS < 2.53758E+02 UG/ML
	22 r		•

FINAL REPORT for 150FEED: 184 WM184

Log Type: ** PLANT **

Report for : NWCF Mailstop : 5116 Log Number : 01-04142 Phone Number : 6-3226

Date Approved : May 01 2001 Time Approved : 08:16 Date Received : Apr 14 2001 Time Received : 12:25

Reviewed by TIFFANY PARK GWA charged : 561211290

MSA mR/hr : CELL Signature _____

Lab QC/QA reviewed by Hazard Index : 1E7

Signature _____ PCBs >50 ppm : NO

	Lab	Field	
Analysis	Spl ID	Spl ID	Method Analyst Results
Acid	1AU93	FEED150/NEOPRENE	57012 RDW 1.854E+00 +- 1.9E-02 Normal Acid
Aluminum	1AU94	FEED150/PLASTIC	87100 BCS 5.21E-01 +- 2.0E-02 MOLAR
Am241	1AU93	FEED150/NEOPRENE	83993 SJH 1.30E+08 +- 1.4E+07 pC/l
Boron	1AU93	FEED150/NEOPRENE	87100 BCS 8.9E+01 +- 1.5E+01 UG/ML
Cadmium	1AU93	FEED150/NEOPRENE	87100 BCS < 1.06553E+02 UG/ML
Calcium	1AU93	FEED150/NEOPRENE	87100 BCS 6.77E+02 +- 1.5E+01 UG/ML
Chloride	1AU93	FEED150/NEOPRENE	57171 BCS 1.005E+03 +- 1.8E+01 ug/mL
Chromium	1AU93	FEED150/NEOPRENE	87100 BCS 9.2E+01 +- 2.4E+01 UG/ML
Co60	1AU93	FEED150/NEOPRENE	83993 SJH 1.697E+07 +- 7.9E+05 pC/l
Cs134	1AU93	FEED150/NEOPRENE	83993 SJH 5.55E+06 +- 3.1E+05 pC/l
Cs137	1AU93	FEED150/NEOPRENE	83993 SJH 1.438E+10 +- 5.5E+08 pC/l
Eu154	1AU93	FEED150/NEOPRENE	83993 SJH 3.24E+07 +- 2.8E+06 pC/l
Fluoride	1AU93	FEED150/NEOPRENE	57093 AWO 4.94E+02 +- 4.2E+01 ug/mL
Iron	1AU93	FEED150/NEOPRENE	87100 BCS 8.32E+02 +- 4.8E+01 UG/ML
Mercury	1AU94	FEED150/PLASTIC	87802 RAH 1.36E+02 +- 1.2E+01 ug/ml
Nitrate	1AU93	FEED150/NEOPRENE	97074 BCS 3.96E+00 +- 1.2E-01 Molar
Potassium	1AU94	FEED150/PLASTIC	12800 RHH 3.44E+03 ug/mL
Sodium	1AU94	FEED150/PLASTIC	12800 RHH 3.12E+04 ug/mL
SpGr	1AU93	FEED150/NEOPRENE	47981 AWO 1.24092E+00 +- 4.0E-04 @ 25/4
Sulfate	1AU93	FEED150/NEOPRENE	97168 BCS 1.02E+03 +- 1.1E+02 ug/ml
Uranium	1AU93	FEED150/NEOPRENE	17920 RAH 3.99E-02 +- 1.5E-03 G/L
Zirconium	1AU93	FEED150/NEOPRENE	87100 BCS < 2.53758E+02 UG/ML
End of Report		esults.	

FINAL REPORT for 150FEED:101 294

Log Type: ** PLANT **

Log Number : 01-05062 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 24 2001 Time Approved : 13:26 Date Received : May 06 2001

Time Received: 15:45

Reviewed by TIFFANY PARK GWA charged : 561211290

MSA mR/hr : CELL Signature ____

Lab QC/QA reviewed by Hazard Index : 1E8

Signature ____ PCBs >50 ppm : NO

	Lab	Field	
Analysis	Spl ID	Spl ID	Method Analyst Results
Acid	1BB06	FEED150/NEOPRENE	57012 RNR 1.781E+00 +- 5.4E-02 Normal Acid
Aluminum	1BB07	FEED150/PLASTIC	
Boron	1BB07		87100 BCS 1.05E+02 +- 1.5E+01 UG/ML
Cadmium	1BB07	FEED150/PLASTIC	87100 BCS 1.75E+02 +- 4.8E+01 UG/ML
Calcium	1BB07	FEED150/PLASTIC	87100 BCS 1.013E+03 +- 1.5E+01 UG/ML
Chloride	1BB06		57171 RNR 8.02E+02 +- 1.7E+01 ug/mL
Chromium	1BB07	FEED150/PLASTIC	87100 BCS 1.01E+02 +- 2.4E+01 UG/ML
Cs134	1BB06	FEED150/NEOPRENE	93993 SJH 2.12E+07 +- 2.1E+06 pC/l
Cs137	1BB06	FEED150/NEOPRENE	93993 SJH 1.94E+10 +- 1.3E+09 pC/l
Fluoride	1BB06	FEED150/NEOPRENE	57093 BCS 9.49E+02 +- 6.0E+01 ug/mL
Iron	1BB07	FEED150/PLASTIC	87100 BCS 7.42E+02 +- 4.8E+01 UG/ML
Mercury	1BB07		87802 RAH 1.23E+02 +- 2.9E+01 ug/ml
NB94	1BB06	FEED150/NEOPRENE	93993 SJH 2.09E+06 +- 2.8E+05 pC/l
Nitrate	1BB06	FEED150/NEOPRENE	97074 BGP 3.279E+00 +- 4.5E-02 Molar
PREP	1BB06	FEED150/NEOPRENE	17961 BCS Prep Completed 2001-05-15 08:46
Potassium	1BB07	FEED150/PLASTIC	12800 RHH 3.86E+03 ug/mL
Sodium	1BB07	FEED150/PLASTIC	12800 RHH 2.69E+04 ug/mL
SpGr	1BB06	FEED150/NEOPRENE	47981 BGP 1.19761E+00 +- 3.4E-04 @ 25/4
Sulfate	1BB06	FEED150/NEOPRENE	97168 BGP 2.77E+03 +- 4.0E+02 ug/ml
Uranium	1BB06	FEED150/NEOPRENE	17920 BCS 4.90E-02 +- 2.9E-03 G/L
Zirconium	1BB07	FEED150/PLASTIC	87100 BCS < 2.54584E+02 UG/ML
		FEED150/NEOPRENE	93993 SJH 4.77E+06 +- 7.4E+05 pC/l
End of Report	22 r	esults.	

FINAL REPORT for 150WM:101 294

Log Type: ** RCRA - PLANT **

Log Number : 01-05063 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 30 2001 Time Approved : 13:13 Date Received : May 06 2001

Time Received: 15:55

GWA charged : 561211290 Reviewed by TIFFANY PARK

MSA mR/hr : CELL Signature ____

Hazard Index : 1E8 Lab QC/QA reviewed by

Signature ____ PCBs >50 ppm : NO

COMMENTS:

Lab Field

Analysis Spl ID Spl ID

Analysis Spl ID Spl ID Method Analyst Results

PREP 1BB08 150WM/NEOPRENE 17961 BGP Prep Completed 2001-05-16 06:07

Total Sr 1BB08 150WM/NEOPRENE 23381 BJS 2.50E+05 +- 3.6E+04 D/S/ML

Tritium 1BB08 150WM/NEOPRENE 33011 WDT 8.26E+02 +- 7.1E+01 D/S/ML

FINAL REPORT for 150WM:101 298

Log Type: ** RCRA - PLANT **

Log Number : 01-05112 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 30 2001 Time Approved : 13:13 Date Received : May 11 2001

Time Received: 09:43

Reviewed by TIFFANY PARK GWA charged : 561211290

Signature _____ MSA mR/hr : ?

Lab QC/QA reviewed by Hazard Index : >1E4

Signature ____ PCBs >50 ppm : NO

COMMENTS:

Analysis Spl ID Spl ID Method Analyst Results

PREP 1BD35 150WM/NEOPRENE 17961 BCS Prep Completed 2001-05-15 08:48

Total Sr 1BD35 150WM/NEOPRENE 23381 BJS 6.19E+05 +- 6.5E+04 D/S/ML

Tritium 1BD35 150WM/NEOPRENE 33011 WDT 8.11E+02 +- 6.9E+01 D/S/ML

End of Report -- 3 results.

INTERIM REPORT for BOPR: NCC-101

Log Type: ** RCRA **

Log Number : 01-06071 Phone Number : 6-7552 Report for : JD LONG Mailstop : 5218

Date Received : Jun 07 2001 Time Received : 09:00

GWA charged : 561C022A9

MSA mR/hr : HOT

Hazard Index : >1E4

PCBs >50 ppm : NO

COMMENTS: If fail to get a acid result in range then run pH. pH does not

need to be RCRA

	Lab	Field	
Analysis	Spl ID		Method Analyst Results
	-		
Acid			57012 RNR 1.711E+00 +- 5.4E-02 Normal Acid
Aluminum			42900 LAM 1.14534E+07 ug/L
Antimony	1BI26		42900 LAM Not Detected: IDL= 235 ug/L
Arsenic	1BI26	BP10120101	42900 LAM 3.35E+02 ug/L
Barium		BP10120101	42900 LAM 3.985E+03 ug/L
Beryllium	1BI26	BP10120101	42900 LAM 9.5E+01 ug/L
Cadmium	1BI26	BP10120101	42900 LAM 1.7555E+05 ug/L
Chromium	1BI26	BP10120101	42900 LAM 1.02E+05 ug/L
Cobalt	1BI26	BP10120101	42900 LAM 1.67E+03 ug/L
Copper	1BI26	BP10120101	42900 LAM 2.697E+04 ug/L
Fluoride	1BI26	BP10120101	57093 AWO 8.26654E+02 ug/mL
Lead	1BI26	BP10120101	42900 LAM 1.1125E+05 ug/L
Manganese	1BI26		42900 LAM 4.30765E+05 ug/L
Mercury		BP10120101	12800 SDN 1.49E+05 ug/L
Nickel	1BI26	BP10120101	42900 LAM 6.64E+04 ug/L
SVOA (TOTAL)	1BI26	BP10120101	9270
Selenium	1BI26	BP10120101	42900 LAM Not Detected: IDL= 240 ug/L
Silver	1BI26	BP10120101	42900 LAM 1.2E+02 ug/L
TIC	1BI26	BP10120101	18060 RDW MDL=119.004 ug/ml
TOC	1BI26	BP10120101	18060 RDW 6.08462E+02 ug/ml
Thallium	1BI26	BP10120101	42900 LAM Not Detected: IDL= 200 ug/L
UDS	1BI26	BP10120101	17972 BCS 0.619 g(UDS)/ L
Uranium	1BI26	BP10120101	17920 BCS 4.98E-02 +- 2.9E-03 G/L
VOA (TOTAL)	1BI26	BP10120101	9260
	1BI27	BP10120201	9260
Vanadium	1BI26	BP10120101	42900 LAM 6.1E+02 ug/L
Zinc	1BI26	BP10120101	42900 LAM 4.12784E+04 ug/L
End of Report	27 re	sults.	-

CONCENTRATED BOTTOMS SAMPLES ANALYSIS REPORT	ГS

F I N A L R E P O R T for 150BOT119 296/297

Log Type: ** PLANT **

Log Number : 01-05106 Phone Number : 6-3226 Report for : NWCF Mailstop : 5216

Date Approved : Feb 04 2002 Time Approved : 13:07 Date Received : May 10 2001

Time Received : 23:55

GWA charged : 561211295 Reviewed by BRIAN STORMS

MSA mR/hr : HOT Signature ____

Lab QC/QA reviewed by Hazard Index : 1E8

PCBs >50 ppm : NO Signature ____

	Lab	Field			
Analysis	Spl ID	Spl ID	Method	Ana	lyst Results
Acid	1BD27	150BOT119PLAS	57012	BGP	2.559E+00 +- 6.0E-02 Normal Acid
Aluminum		150BOT119PLAS			
Chloride	1BD27	150BOT119PLAS			8.02E+02 +- 1.7E+01 ug/mL
Co60	1BD28	150BOT119	93993	SJH	3.32E+07 +- 2.6E+06 pC/l
	1BE80				3.71E+07 +- 1.8E+06 pC/l
Cs134	1BD28	150BOT119	93993	SJH	2.33E+07 +- 1.8E+06 pC/l
	1BE80	150BOT119 DUP			2.38E+07 +- 1.2E+06 pC/l
Cs137	1BD28	150BOT119			2.13E+10 +- 1.6E+09 pC/l
	1BE80	150BOT119 DUP	83993	SJH	2.116E+10 +- 7.0E+08 pC/l
Eu154	1BD28	150BOT119			8.42E+07 +- 7.8E+06 pC/1
	1BE80	150BOT119 DUP	83993	SJH	9.66E+07 +- 7.8E+06 pC/l
Fluoride	1BD27	150BOT119PLAS	57093	BGP	8.85E+02 +- 7.8E+01 ug/mL
Nitrate	1BD27	150BOT119PLAS	97074	BGP	4.03E+00 +- 1.2E-01 Molar
PREP	1BD27	150BOT119PLAS			Prep Completed 2001-05-11 02:41
	1BD28	150BOT119			Prep Completed 2001-05-15 08:47
Phosphorous	1BD27	150BOT119PLAS			1.19887E+02 ug/ml
Potassium	1BD28	150BOT119			6.20E+02 ug/mL
Sodium	1BD28	150BOT119			1.16E+04 ug/mL
SpGr	1BD27	150BOT119PLAS	47981	BGP	1.07469E+00 +- 1.7E-04 @ 25/4
Tritium	1BD27	150BOT119PLAS			4.01E+02 +- 3.4E+01 D/S/ML
UDS	1BD27	150BOT119PLAS			5.3 G/L
Uranium	1BD28	150BOT119			5.87E-02 +- 2.4E-03 G/L
Zr95	1BD28	150BOT119			5.52E+06 +- 4.4E+05 pC/l
	1BE80	150BOT119 DUP	83993	SJH	5.04E+06 +- 3.5E+05 pC/l
End of Report	24 re	esults.			

INTERIM REPORT for 150BOT119 324

Log Type: ** PLANT **

Report for : NWCF Log Number : 01-06146 Mailstop : 5216 Phone Number : 6-3226

Date Received : Jun 15 2001

Time Received : 00:15

GWA charged : 561211295

MSA mR/hr : HOT

Hazard Index : 1E8

PCBs >50 ppm : NO

Analysis	Lab Field Spl ID Spl ID	Method	Analyst Results
Acid Aluminum Chloride Fluoride I129 Nitrate PREP	1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119		BCS 8.59E-01 +- 3.0E-02 MOLAR BGP 1.016E+03 +- 1.8E+01 ug/mL AWO 1.71E+03 +- 1.2E+02 ug/mL BCS 5.27E+00 +- 1.8E-01 Molar RAH Prep Completed 2001-07-02 13:24
Phosphorous Potassium Sodium SpGr Tritium UDS Uranium End of Report	1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 1BK68 150BOT119 15 results.	42900 12800 12800 47981 33011 17972	BCS Prep Completed 2001-06-17 17:06 RHH 4.33229E+02 ug/ml SDN 5.06E+03 ug/mL SDN 3.59E+04 ug/mL BGP 1.35635E+00 +- 5.6E-04 @ 25/4 WDT 5.6E+02 +- 1.0E+02 D/S/ML RNR 1.187 g/L RAH 7.39E-02 +- 3.7E-03 G/L

INTERIM REPORT for BOPR: NCC-119

Log Type: ** RCRA **

Report for : JD LONG Log Number : 01-06214 Mailstop : 5218 Phone Number : 6-7552

Date Received : Jun 21 2001 Time Received : 12:51

GWA charged : 561C022AA

MSA mR/hr : HOT

Hazard Index : >1E4

PCBs >50 ppm : NO

COMMENTS: If fail to get a acid result in range then run pH. pH does not need to be RCRA samples to include trip blank (BP10130201)

n 1 i -	Lab		Method Analyst Results
Analysis		Spl ID	method Analyst Results
Acid			57012 BET 1.741E+00 +- 5.4E-02 Normal Acid
Aluminum			42900 LAM 8.4336E+06 ug/L
Antimony	1BL27		42900 LAM 1.56E+03 ug/L
Arsenic		BP10130101	42900 LAM Not Detected: IDL= 580 ug/L
Barium	1BL27	BP10130101	42900 LAM 2.96E+03 ug/L
Beryllium	1BL27	BP10130101	42900 LAM 6.0E+01 ug/L
Cadmium	1BL27	BP10130101	42900 LAM 1.4692E+05 ug/L
Chromium	1BL27	BP10130101	42900 LAM 8.702E+04 ug/L
Cobalt	1BL27	BP10130101	42900 LAM 1.42E+03 ug/L
Copper	1BL27	BP10130101	42900 LAM 1.908E+04 ug/L
Fluoride	1BL27	BP10130101	57093 BET 1.00262E+03 mg/L
Lead	1BL27	BP10130101	
Manganese		BP10130101	42900 LAM 3.392E+05 ug/L
Mercury	1BL27	BP10130101	12800 SDN 1.14E+05 ug/L
Nickel	1BL27	BP10130101	42900 LAM 5.532E+04 ug/L
SVOA (TOTAL)	1BL27	BP10130101	9270
Selenium	1BL27	BP10130101	42900 LAM Not Detected: IDL= 960 ug/L
Silver	1BL27	BP10130101	42900 LAM Not Detected: IDL= 400 ug/L
TIC	1BL27	BP10130101	
TOC	1BL27	BP10130101	18060 RDW 7.5499E+02 ug/ml
Thallium	1BL27	BP10130101	42900 LAM Not Detected: IDL= 800 ug/L
UDS	1BL27	BP10130101	17972 RNR 1.288 g/L
Uranium	1BL27	BP10130101	17920 BCS 6.22E-02 +- 3.3E-03 G/L
VOA (TOTAL)	1BL27	BP10130101	9260
	1BL28	BP10130201	9260
Vanadium	1BL27		42900 LAM 5.6E+02 ug/L
	1BL27		42900 LAM 3.23E+04 ug/L
End of Report	27 r	esults.	

INTERIM REPORT for 150BOT119 333/334

Log Type: ** PLANT **

Report for : NWCF Log Number : 01-06233 Mailstop : 5216 Phone Number : 6-3226

Date Received : Jun 24 2001

Time Received : 11:42

GWA charged : 561211295

MSA mR/hr : CELL

Hazard Index : 1E8

PCBs >50 ppm : NO

Analysis	Lab Field Spl ID Spl I	_	
Acid Aluminum Chloride Fluoride I129	1BL41 150BO 1BL41 150BO 1BL41 150BO 1BL41 150BO 1BL41 150BO	0T119 87100 BCS 7.11E-01 +- 2.9E-02 0T119 57171 RDW 1.323E+03 +- 2.2E+01 0T119 57093 BGP 1.30E+03 +- 1.0E+02	MOLAR ug/mL
Nitrate PREP Phosphorous Potassium Sodium SpGr Tritium UDS Uranium End of Report	1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0 1BL41 150B0	DT119 17961 RAH Prep Completed 2001-0 DT119 42900 RHH 4.282E+02 ug/ml DT119 12800 SDN 6.04E+03 ug/mL DT119 12800 SDN 4.39E+04 ug/mL DT119 47981 BCS 1.30357E+00 +- 4.9E DT119 33011 WDT Data not approved yet DT119 17972 RNR 0.725 g/L DT119 17920 BCS 1.037E-01 +- 4.7E-03	7-02 13:23 -04 @ 25/4

CONDENSED OVERHEADS SAMPLES ANALYSIS REPORTS

Log Type: ** PLANT **

Log Number : 01-05061 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 06 2001 Time Approved : 17:51 Date Received : May 06 2001

Time Received: 12:17

Reviewed by W. (BILL) STRONG GWA charged : 561211296

Signature _____ MSA mR/hr : HOT

Hazard Index : 1E5 Lab QC/QA reviewed by

PCBs >50 ppm : NO Signature ____

COMMENTS:

Analysis	Lab Spl ID	Field Spl ID	Method Analyst Results	
				-
AL/F RATIO	1BB04	150COND122/NEOPRENE	11023 BCS Ratio Not Performed	
Acid	1BB04	150COND122/NEOPRENE	57012 RDW 4.67E-01 +- 1.2E-02 Normal Acid	
Aluminum	1BB05	150COND122/PLASTIC	87100 BCS 1.08E-03 +- 2.3E-04 MOLAR	
Chloride	1BB04	150COND122/NEOPRENE	57171 BCS 1.747E+02 +- 6.5E+00 ug/mL	
Flash Point	1BB04	150COND122/NEOPRENE	17985 BCS NO FLASH @ 60.00 deg C corrected	
Fluoride	1BB04	150COND122/NEOPRENE	57093 BCS Not Detected: MDL=7.757 ug/mL	
GROSS BETA	1BB04	150COND122/NEOPRENE	87970 BCS 3.96E+05 +- 2.0E+04 B/Min/ml	
Mercury	1BB05	150COND122/PLASTIC	87802 RDW 4.59E+00 +- 4.6E-01 ug/ml	
Nitrate	1BB04	150COND122/NEOPRENE	97074 BCS 4.011E-01 +- 4.7E-03 Molar	
SpGr	1BB04	150COND122/NEOPRENE	47981 BCS 1.01272E+00 +- 1.0E-04 @ 25/4	
Sulfate	1BB04	150COND122/NEOPRENE	97168 BCS 1.47E+01 +- 3.9E+00 ug/ml	
TOC	1BB04	150COND122/NEOPRENE	18060 RDW 1.517E+02 +- 9.1E+00 ug/ml	
UDS	1BB04	150COND122/NEOPRENE	17972 BCS No Visible Solids.	
Uranium	1BB04	150COND122/NEOPRENE	17920 BCS < 3.24219E-04 G/L	
0101110	1BB04	150COND122/NEOPRENE	17920 BCS < 3.24219E-04 G/L	
End of Penort		enlte		

Log Type: ** PLANT **

Log Number : 01-05073 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 08 2001 Time Approved : 11:11 Date Received : May 07 2001 Time Received : 17:33

GWA charged : 561211296 Reviewed by CLAYNE GRIGG

MSA mR/hr : 1.0 Signature _____

Lab QC/QA reviewed by Hazard Index : 1E5

Signature ____ PCBs >50 ppm : NO

	Lab	Field	
Analysis	Spl ID	Spl ID	Method Analyst Results
AL/F RATIO	1BB24	150COND122/NEOPRENE	11023 BGP Ratio Not Performed
Acid	1BB24	150COND122/NEOPRENE	57012 BGP 4.50E-01 +- 1.2E-02 Normal Acid
Aluminum	1BB25	150COND122/PLASTIC	87100 RAH < 7.55977E-04 MOLAR
Chloride	1BB24	150COND122/NEOPRENE	57171 BGP 1.72E+02 +- 1.1E+01 ug/mL
Flash Point	1BB24	150COND122/NEOPRENE	17985 BET NO FLASH @ 60.00 deg C corrected
Fluoride	1BB24	150COND122/NEOPRENE	57093 BGP Not Detected: MDL=6.982 ug/mL
GROSS BETA	1BB24	150COND122/NEOPRENE	87970 RAH 4.94E+04 +- 2.9E+03 B/Min/ml
Mercury	1BB25	150COND122/PLASTIC	87802 RAH 3.80E+00 +- 2.3E-01 ug/ml
Nitrate	1BB24	150COND122/NEOPRENE	97074 BGP 4.198E-01 +- 4.8E-03 Molar
SpGr	1BB24	150COND122/NEOPRENE	47981 BGP 1.01208E+00 +- 1.0E-04 @ 25/4
Sulfate	1BB24	150COND122/NEOPRENE	97168 BGP 1.15E+01 +- 4.0E+00 ug/ml
TOC	1BB24	150COND122/NEOPRENE	18060 BGP 1.313E+02 +- 9.1E+00 ug/ml
UDS	1BB24	150COND122/NEOPRENE	17972 BGP No Visible Solids.
Uranium	1BB24	150COND122/NEOPRENE	17920 RAH < 3.24219E-04 G/L
	1BB24	150COND122/NEOPRENE	17920 RAH < 3.24219E-04 G/L
End of Report	15 r	esults.	

Log Type: ** PLANT **

Log Number : 01-05087 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 09 2001 Time Approved : 02:13 Date Received : May 08 2001

Time Received : 14:53

Reviewed by BRIAN PASSMORE GWA charged : 561211296

MSA mR/hr : HOT Signature _____

Lab QC/QA reviewed by Hazard Index : >1E4

Signature _____ PCBs >50 ppm : NO

COMMENTS:

	Lab	Field		
Analysis	Spl ID	Spl ID	Method	Analyst Results
				mgg p 1 1 N 1 D 2 5 ammed
AL/F RATIO	1BB54	150COND122/NEOPRENE		BCS Ratio Not Performed
Acid	1BB54	150COND122/NEOPRENE	57012	RNR 4.76E-01 +- 1.2E-02 Normal Acid
Aluminum	1BB55	150COND122/PLASTIC	87100	BCS < 4.20091E-04 MOLAR
Chloride	1BB54	150COND122/NEOPRENE		RNR 1.828E+02 +- 6.6E+00 ug/mL
Flash Point	1BB54	150COND122/NEOPRENE		BET NO FLASH @ 60.00 deg C corrected
Fluoride	1BB54	150COND122/NEOPRENE	57093	BCS Not Detected: MDL=6.982 ug/mL
GROSS BETA	1BB54	150COND122/NEOPRENE	87970	RAH 5.01E+03 +- 7.3E+02 B/Min/ml
Mercury	1BB55	150COND122/PLASTIC	87802	RAH 3.73E+00 +- 2.3E-01 ug/ml
Nitrate	1BB54	150COND122/NEOPRENE	97074	RAH 2.049E-02 +- 2.2E-04 Molar
SpGr	1BB54	150COND122/NEOPRENE	47981	BET 1.01314E+00 +- 1.0E-04 @ 25/4
Sulfate	1BB54	150COND122/NEOPRENE	97168	RAH < 2.86967E+00 ug/ml
TOC	1BB54	150COND122/NEOPRENE	18060	BET 1.286E+02 +- 9.0E+00 ug/ml
UDS	1BB54	150COND122/NEOPRENE	17972	BET no visible solids
Uranium	1BB54	150COND122/NEOPRENE	17920	BCS < 3.24219E-04 G/L
	1BB54	150COND122/NEOPRENE	17920	BGP < 3.24219E-04 G/L
End of Penort	15 re	agulte		

Log Type: ** PLANT **

Log Number : 01-05092 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : May 10 2001 Time Approved : 01:06 Date Received : May 09 2001

Time Received: 18:47

GWA charged : 561211296 Reviewed by BRIAN PASSMORE

MSA mR/hr : HOT Signature _____

Lab QC/QA reviewed by Hazard Index : >1E4

Signature PCBs >50 ppm : NO

COMMENTS:

Analysis	Lab Spl ID	Field Spl ID	Method Analyst Results
7. / D. D. M. C.	10000	150GOND122/NEODDENE	11023 RAH Ratio Not Performed
AL/F RATIO		150COND122/NEOPRENE	
Acid	1BB93	150COND122/NEOPRENE	57012 BGP 4.80E-01 +- 1.2E-02 Normal Acid
Aluminum	1BB94	150COND122/PLASTIC	87100 RAH < 7.51772E-04 MOLAR
Chloride	1BB93	150COND122/NEOPRENE	57171 BGP 1.86E+02 +- 1.1E+01 ug/mL
Flash Point	1BB93	150COND122/NEOPRENE	17985 BGP NO FLASH @ 60.00 deg C corrected
Fluoride	1BB93	150COND122/NEOPRENE	57093 BGP Not Detected: MDL=6.982 ug/mL
GROSS BETA	1BB93	150COND122/NEOPRENE	87970 RAH 3.52E+04 +- 2.2E+03 B/Min/ml
Mercury	1BB94	150COND122/PLASTIC	87802 RAH 2.31E+00 +- 2.3E-01 ug/ml
Nitrate	1BB93	150COND122/NEOPRENE	97074 BGP 4.233E-01 +- 4.7E-03 Molar
SpGr	1BB93	150COND122/NEOPRENE	47981 BGP 1.01307E+00 +- 1.0E-04 @ 25/4
Sulfate	1BB93	150COND122/NEOPRENE	97168 BGP 1.08E+01 +- 4.0E+00 ug/ml
TOC	1BB93	150COND122/NEOPRENE	18060 BGP 1.468E+02 +- 9.1E+00 ug/ml
UDS	1BB93	150COND122/NEOPRENE	17972 BGP No visible solids.
Uranium	1BB93	150COND122/NEOPRENE	17920 RAH < 3.24219E-04 G/L
	1BB93	150COND122/NEOPRENE	17920 RAH < 3.24219E-04 G/L
End of Bonort	15 r	asults	

Log Type: ** PLANT **

Log Number : 01-06145 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Jun 17 2001 Time Approved : 14:04 Date Received : Jun 14 2001

Time Received : 23:07

Reviewed by W. (BILL) STRONG GWA charged : 561211296

MSA mR/hr : HOT Signature _____

Lab QC/QA reviewed by Hazard Index : >1E4

Signature _____ PCBs >50 ppm : NO

Analysis	Lab Field Spl ID Spl ID	Method Analyst Results
AL/F RATIO	1BK66 150COND122/NEOP	RENE 11023 BCS Ratio Not Performed
Acid	1BK66 150COND122/NEOP	RENE 57012 BGP 4.98E-01 +- 1.2E-02 Normal Acid
Aluminum	1BK67 150COND122/PLAS	FIC 87100 BCS < 4.20091E-04 MOLAR
Chloride	1BK66 150COND122/NEOP	RENE 57171 BGP 1.986E+02 +- 6.8E+00 ug/mL
Flash Point	1BK66 150COND122/NEOP	RENE 17985 BCS NO FLASH @ 60.00 deg C corrected
Fluoride	1BK66 150COND122/NEOP	
GROSS BETA	1BK66 150COND122/NEOP	RENE 87970 RAH 1.161E+05 +- 6.4E+03 B/Min/ml
Mercury	1BK67 150COND122/PLAS	
Nitrate	1BK66 150COND122/NEOP	RENE 97074 BCS 4.393E-01 +- 7.1E-03 Molar
SpGr	1BK66 150COND122/NEOP	RENE 47981 BGP 1.01377E+00 +- 1.0E-04 @ 25/4
Sulfate	1BK66 150COND122/NEOP	RENE 97168 RAH 8.0E+00 +- 4.0E+00 ug/ml
TOC	1BK66 150COND122/NEOP	RENE 18060 BGP 1.442E+02 +- 9.1E+00 ug/ml
UDS	1BK66 150COND122/NEOP	RENE 17972 BCS No Visible Solids
Uranium	1BK66 150COND122/NEOP	
	1BK66 150COND122/NEOP	RENE 17920 RAH < 3.24219E-04 G/L
- 1 6	4 5	

INTERIM REPORT for BOPR:NCC-122

Log Type: ** RCRA **

Report for : JD LONG Log Number : 01-06221 Mailstop : 5218 Phone Number : 6-7552

Date Received : Aug 13 2001

Time Received : 10:53

GWA charged : 561C022AB

MSA mR/hr : HOT

Hazard Index : >1E4

PCBs >50 ppm : NO

COMMENTS: If fail to get a acid result in range then run pH. pH does not

need to be RCRA

	Lab F	Field		
Analysis	Spl ID S	Spl ID	Method Analyst Results	
Acid	1BL29 E	BP10140101	57012 BGP 5.14E-01 +- 1.2E-02 Normal	Acid
Aluminum		BP10140101	42900 LAM 1.703E+03 ug/L	
Antimony		BP10140101	42900 LAM Not Detected: IDL= 47 ug/L	
Arsenic		BP10140101	42900 LAM Not Detected: IDL= 29 ug/L	
Barium	1BL29 E	BP10140101	42900 LAM 9.0E+00 ug/L	
Beryllium	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 1 ug/L	
Cadmium	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 4 ug/L	
Chromium	1BL29 E	BP10140101	42900 LAM 2.7E+01 ug/L	
Cobalt	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 10 ug/L	
Copper	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 14 ug/L	
Fluoride	1BL29 E	BP10140101	57093 BET 3.40346E+00 mg/L	
Lead	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 63 ug/L	
Manganese	1BL29 E	BP10140101	42900 LAM 1.3E+01 ug/L	
Mercury	1BL29 E	BP10140101	12800 SDN 3950. ug/L	
Nickel	1BL29 E	BP10140101	42900 LAM 3.2E+01 ug/L	
SVOA (TOTAL)	1BL29 E	BP10140101	9270	
Selenium	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 48 ug/L	
Silver	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 20 ug/L	
TIC	1BL29 E	BP10140101	18060 RDW mdl=23.8008 ug/ml	
TOC	1BL29 E	BP10140101	18060 RDW 1.47853E+02 ug/ml	
Thallium	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 40 ug/L	
UDS	1BL29 E	BP10140101	17972 RNR 0.0 g/L	
Uranium	1BL29 E	BP10140101	17920 BCS < 3.24219E-04 G/L	
VOA (TOTAL)	1BL29 E	BP10140101	9260	
	1BL30 E	BP10140201	9260	
Vanadium	1BL29 E	BP10140101	42900 LAM Not Detected: IDL= 10 ug/L	
Zinc		BP10140101	42900 LAM 5.3E+01 ug/L	
End of Report	27 res	sults.		

Log Type: ** PLANT **

Log Number : 01-06241 Phone Number : 6-3226 Report for : NWCF Mailstop : 5116

Date Approved : Jun 25 2001 Time Approved : 16:38 Date Received : Jun 24 2001

Time Received : 11:44

Reviewed by CLAYNE GRIGG GWA charged : 561211296

MSA mR/hr : CELL Signature ____

Lab QC/QA reviewed by Hazard Index : 1E5

Signature _____ PCBs >50 ppm : NO

COMMENTS:

	Lab	Field	
Analysis	Spl ID	Spl ID	Method Analyst Results
AL/F RATIO	1BL43	150COND122/NEOPRENE	11023 BCS Ratio Not Performed
Acid	1BL43	150COND122/NEOPRENE	57012 RDW 4.71E-01 +- 1.2E-02 Normal Acid
Aluminum	1BL44	150COND122/PLASTIC	87100 BCS < 4.20091E-04 MOLAR
Chloride	1BL43	150COND122/NEOPRENE	57171 RDW 1.91E+02 +- 1.1E+01 ug/mL
Flash Point	1BL43	150COND122/NEOPRENE	17985 BCS NO FLASH @ 60.00 deg C corrected
Fluoride	1BL43	150COND122/NEOPRENE	87092 BCS Not Detected: MDL=3.504 ug/ml
GROSS BETA	1BL43	150COND122/NEOPRENE	87970 BCS 6.90E+03 +- 7.9E+02 B/Min/ml
Mercury	1BL44	150COND122/PLASTIC	87802 RDW 3.27E+00 +- 4.6E-01 ug/ml
Nitrate	1BL43	150COND122/NEOPRENE	97074 BCS 4.007E-01 +- 9.0E-03 Molar
SpGr	1BL43	150COND122/NEOPRENE	47981 BCS
Sulfate	1BL43	150COND122/NEOPRENE	97168 BCS < 5.63559E+00 ug/ml
TOC	1BL43	150COND122/NEOPRENE	18060 RDW 1.888E+02 +- 9.3E+00 ug/ml
UDS	1BL43	150COND122/NEOPRENE	17972 BCS No Visible Solids
Uranium	1BL43	150COND122/NEOPRENE	17920 BCS < 3.24219E-04 G/L
	1BL43	150COND122/NEOPRENE	17920 BCS < 3.24219E-04 G/L
End of Penort	15 m	egulte	

LAB QUALIFIER LIST

For volatile and semi-volatile organic analytical results, the INEEL qualifiers to be used are as follows:

- U Indicates the compound was analyzed for but not detected. The sample quantification limit, or method detection limit (MDL) for EPA Method 524.2 (see Section C, Part I), must be corrected for dilution. For example, 10 U for phenol in water if the sample final volume is the protocol-specified final volume and the method quantification limit for phenol is $10 \mu g/L$. If a 1 to 10 dilution of extract is necessary, the reported limit is 100 U.
 - If an analyte is detected at a concentration that is less than the MDL, it shall be reported at the estimated quantification limit (EQL) (concentration of the low standard in the initial calibration) and a "U" flag shall be used on the Form I.
- Indicates an estimated value. This flag is used under the following circumstances: 1) either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample estimated quantification limit but greater than the method detection limit (MDL), and 3) when the retention time data indicates the presence of a compound that meets the pesticide/polychlorinated bisphenyls (PCBs) identification criteria and the result is less that the EQL but greater than zero. For example, if the sample quantification limit is 10 μg/L, but a concentration of 3 μg/L is calculated, report the result as 3 J. The sample estimated quantification limit must be adjusted for the U flag, so that if a sample with 24% moisture and a 1 to 10 dilution factor has a calculated concentration of 300 μg/kg and a sample quantification limit of 4300 μg/kg, report the concentration as 300 J on Form I. Note: The "J" code is not used and the compound is not reported as being identified for pesticide/PCBs results less than the Contract-Required Quantification Limit (CRQL), if the technical judgement of the pesticide residue analysis expert determines that the peaks used for compound identification resulted from instrument noise or other interferences (column bleed, solvent contamination, etc).
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. The N flag is applicable only to tentatively identified compound results. For generic characterization of a tentatively identified compound, such as chlorinated hydrocarbon, the N code is not used.
- B This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. This flag shall be used for a TIC as well as for a positively identified target compound. This flag shall not be used for flagging results on Forms I for the method blank analyses.
- E This flag identifies compounds whose concentrations exceed the calibration range of the gas chromatography (GC) or gas chromatography/mass spectrometry (GC/MS) instrument for that specific analysis. If one or more compounds has a response representing a concentration greater than the highest concentration used in the initial calibration of the instrument, the sample or extract shall be diluted and re-analyzed. All such compounds with a response greater than the highest concentration used in the initial calibration shall have the

concentration flagged with an "E" on the Form I for the original analysis. If the dilution of the extract causes any compounds identified in the first analysis to be below the calibration range in the second analysis, then the results of both analyses shall be reported on separate Forms I. The Form I for the diluted sample shall have the "DL" suffix appended to the sample number. NOTE: For total xylenes, where three isomers are quantified as two peaks when using capillary column chromatography, the calibration range of each peak should be considered separately, e.g., a diluted analysis is not required for total xylenes unless the concentration of either peak separately exceeds 200 µg/L.

- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and all concentration and quantification limit values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- S This optional flag indicates that the compound is a matrix spike and thus, the concentration is not reported on Form I.
- P This flag is used for a pesticide/PCBs target analyte when there is greater than 25% difference for detected concentrations between the two GC Columns (See Form X). The lower of the two values is reported on the Form I and flagged with a "P".
- M This flag indicates that the analyte was quantified using a calibration curve constructed using a first or higher order regression fit as specified in and allowed by SW-846 methods 8260A (paragraph 7.3.6.1) and 8270B (paragraph 7.3.5.1).
- H The extraction holding time was exceeded.
- X, Y, or Z Other specific flags may be required to properly define the results. If used, they must be fully described and such description attached to the Sample Data Summary Package and the Sample Delivery Group (SDG) Narrative. For the data contained in this report, "Y" indicates that the data is to be used for qualitative purposes only and "Z" indicates that the initial calibration contains one less point than required by the method.

The combination of flags "BU" or "UB" is expressly prohibited. Blank contaminants are flagged "B" only when they are also detected in the sample.

For the analyses, other than volatile and semi-volatile organic compounds the lab qualifiers are as follows:

- U Used if the reported value is less than the instrument's detection limit (IDL).
- B Used if the reported value is less than ten times the IDL, but is greater than or equal to the IDL.
- N Used when spike recovery of either the matrix spike or matrix spike duplicate is not within the limits of 80 120%.
- E Used when the serial dilution or analytical spike is not within the SOW-156 limits.

APPENDIX D DCS DATA

	_
	RS OGGOSTRT.
	VAPORATOR PARAMETER
orator parameters.	ū
D-1. Evapora	
Table	

	į	schm	632.45	624.13	633.6	625.8	651.66	614.2	636.2			130-1	Scfm 6.19.49	603.97	622.32	627.61	642.05	626.59	625.62	604.61	613.46	649.86	62628		į	8	5ctm 611.81	635.14	639.53	666.56	633.06	637.62	642.69	652.44	644.66	620.82	664.12	656.65			130-1	sofm 661.48	641.36	620.13 660.25	9799	649.2	642.31	626.42	668.24	634.91	
		degrees F	163.65	163.64	163.64	163.63	163.63	163.63	163.62			130-4-1 F.	degrees F	163.59	163.59	163.59	163.58	163.58	163.58	163.57	163.57	163.57	163.56			8 . 1	163.41	163.41	163.41	163.4	163.4	163.39	163.39	163.39	163.38	163.38	163.37	163.37			30-4-1	legrees F 163.33	163.33	163.33	163.32	163.32	163.32	163.31	163.31	163.31	
		degrees F	98.824	98.816 98.812	98.808	98.8	98.782	98.784	98.776			30-3-1 T-:	egrees F (98.717	98.71	98.706	98.698	98.694	98.686	98.682	98.674	98.666	38.662		,	30-3-1	egraes F C	97.833	97.836	97.844	97.848	97.855	97.863	97.866	97.874	97.878	97.885	97.893			30-3-1 T-1	97.945 o	97.949	97.953	97.96	97.964	97.972	97.975	97.983	97.987 97.99	
		Su-2-1 1-1	104.86	104.85	104.84	104.83	104.82	104.8	104.79			30-2-1 I-1	egrees F c	104.7	104.69	104.69	104.67	104.67	104.66	104.65	104.64	104.63	104.62		,	30-2-1 T-1	egrees F d +04.43	104.43	104.43	104.44	104.45	104.45	104.46	104.46	104.47	104.48	104.48	104.49			10-2-1 T-1	sgrees F d 104.54	104.55	25 45 55 55	104.56	104.58 52.58	104.57	104.57	104.58	104.58	
	;	egrees F d	105.49	105.49	105.48	105.48	105.47	105.47	105.47			30-1-1 T-1:	egrees F d	105.44	105.43	105.43	105.43	105.43	105.42	105.42	105.42	105.41	105.41			30-1-1	agrees F da	104.61	104.61	104.62	104.62	104.62	104.62	104.62	104.63	104.63	104.63	104.63			30-1-1 T-13	ignees F de 104.65	104.65	104.65	104.66	104.66	104.66	104.66	104.66	104.66	
		legraes F d	183,11	183.09	183.07	183.05	183.03	183.01	182.99			I-335-2 I-1	egrees F d	182.83	182.81	182.8	182.78	182.77	182.75	182.74	182.72	182.7	182.69			1.335-2 T-1	egrees F de	183.03	183.02	183.02	183.01	183	182.99	182.99	182.98	182.98	182.97	182.96			r-335-2 T-13	agrees F de 182.91	182.9	182.9	182.89	182.89	182.88	182.88	182.87	182.86	
!	,	IN NC	8.1261	8.1304	8.1348	8.1391	8.1435	8.1478	8.1522		ļ	1-130-1	IN WC d	8.1848	8.1869	8.1913 8.1935	8.1956	8.1978	8.2022	8.2043	8.2087	8.213	8.2152	ŀ	,	2	NWC 8.3554 d	8.3562	8.356	8.3557	8.3556	8.3553	8,3551	8.3548	8.3545	8.3544	8.354	8.3537 8.3536			5	N WC de 8.3516	8.3514	8.3513	8.351	8.3508	8.3505	8.3504	8.3501	8.3497	;
	;	N NC	1.9695	1.9703	1.9711	1.9719	1.9726	1.9734	1.9742			130-4-1 PE	IN WC	1.98	1.9804	1.9811	1.9819	1.9823	1.9831	1.9835	1.9842	1.985	1.8894			30-4-1	IN WC 2.0576	2.0575	2.0574	2.0572	2.0571	2.0568	2.0567	2.0565	2,0563	2.0562	2.056	2.0558			30-4-1	IN WC 2.0544	2.0543	2.0541	2.054	2.0539	2.0537	2.0536	2.0534	2.0533	
		I W.C	00	00	00	00	00		00			0-3-1 PD-	, wc		00	00	0	00		0 0	0 0		0			P9-1	ە 2	0	00		0 0			0 (- 0	00	00	000			F3-1 PD-1	o OM	00	- 0	0	00	• •	00	001	00	
		2 =	92e	36 36 36 38	92 28 28	98 98 98 98	8 8	9 9	8 8			PD-130	<u> </u>	9	88	88	3 18	88	98	98 98	929	3 68 6	8		4	PD-13	<u>z</u>	26	8 8 8	88	28 Y	383	8 8	98	8 98	926	9 (3 22 25			PD-130	z 8	98 £	8.8	2.92	92.92	2 18	92.92	92	8 9	ł
		IN WC	0.0	O O	9 9	9 9	90.0-	9 9	9 9			PD-130-2-1	IN WC	O.	9 9	0, 0	0.0	9 9	0.0	Ö Ö	0,0	-0.056	5		7 000	PD-130-2-1	S C	0.0	9 9	00	9 9	00	9 9	000	9 9	9, 6	0,0	0.056			PD-130-2-1	N WC	90.0	2 0	-0.0	0.0 80.0	90.0	90.0	-0.056	900	
		IN MC	0.008	0.008	0.008	0.008	0.008	0.008	0.008			D-130-1-1	IN WC	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008		, , , ,	0-130-1-1	N WC	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008			1-130-1-1	N WC 0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	
		wevac r	48.987	48.981	48.974	48.968	48.961	48.955	48.949			-130-2 P	"WCV3C	48.9	46.894	48.891	48.884	48.881	48.874	48.871	48.865	48.858	48.855			130.2 P	- WCVBC	48.704	48.7	48.7	48.7	48.7	48.7	48.7	4 4 7.84	48.7	48.7	7.84			-130-2 PI	Wcvac 48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	
	,	WCVac	11.581	11.583	11.584	11.586	11.588	11.589	11.591			122-1 P	wcvac	11.602	11.604	11.605	11,606	11.608	11,609	191	11.611	11.613	11.613		,		wevae 11.553	11,551	11.548	11.546	11.544	11.541	11.539	11.536	11.532	11.531	11.527	11.524			1-22	WCV3C 11.5	11.498	11.495	11.493	11.491	11.488	1.486	11.483	11.481	
ERS		scfm	170.52	169.59 169.12	168.66 168.19	167.73	166.33	165.87	164.93			136-1 P-	scfm 158.40	157.95	157.02	156.56	155.26	153.55	152.69	150.98	150.12	148.4	147.55	-	,	4	168.77	169	169.24	169.71	169.94	170.42	170.65	171.12	171.59	171.83	172.3	172.77			136-1 P-1		176.3	176.54	177.01	177.24	17.77	177.95	178.42	178.65	
AS PARAMET	4	agrees F	75.648	75.862	75.74	75.818	75.896	75.975	76.053			336-1C F	19 Fees F	76.638	76.717	76.756	76.834	76.873	76.951	77,029	77.068	77.146	47.745			336-10	76.543	76.558	76.572	76.6	76.614	76.643	76.67	76.685	76.714	76.728	76.756	76.785			336-1C F	grees F s 76.983	76.997	77.026	77.04	77.054	77.082	77.097	77.125	77.153	
NWCF OFFG	porator	ap de	-2.387	-1.95	-1,514	-1.077	7.1828	1125.7	1725.5		356-1 porator	in flow T-	1719.F. de	174	1732.1	1734.6	1721.3	1729.2	1729.4	1725.5	1714.2	1714.5	1726.9	1-05	porator	-L How	90 696°U	-0,588	3.6601	446.62	1335.8	1736.2	1721.4	1724.7	1726.2	1725.9	1730	1725.3		50-1 sorator	T- Mollin	1732.2 de	1725.5	1722.5	1724.8	1726.5	1733.7	380.21	-9.053	8.824	
	orator eva	nough	18.034 37.086	56.134 75.182	93.734	127.73	137.12	136.91	136.7		D-1 F	of ster	I34 12	134.78	135.59	135.86	135.83	135.67	135.36	135.56	135.88	135.62	135.49	P-0	rator eva	e ster	136.57	136.52	136.46	136.35	136.33	136.42	136.06	132.97	125.45	121.13	113.01	124.3		0-1 F. rator eva	el stea	lb/hour 128.9	129.23	129.67	129.86	130.06	130.43	130.03	129.31	128.98	
	tor evap	hches	1875 1867	1858 1.185	1842 1833	1825	1.18	1792	1675		tor evance	val lav	Inches 2001	2129	2205	2242	2318	2356	2431	2469	2545	1.262	9692	1	tor evapor	é		1896	1885	188	1875	1736	1631	1628	1714	1781	1916	1994		tor evapo	vel /	Inches 2536	257	2636	2672	2706	2775	2809	2877	2911	í
	evapora	- 1	60	÷.			-		100		D:150-	- 1	Grams/ml			= '	-	لاي لاي				75	-	D-150-	evapora	- 1		-				: 44.								D-150- evaporal		Grams/ml	•		: 2 :		+				
	9	ees C	37.729 5	38.702	47.101	78.993	98.08	101.2	101.85			30-10	102.7 1	102.95	103.25	103.4	103.7	103.85	104.15	105.07	104.97	104.66	104.51		9	2	38.548	38.676	39.943	39.477	39.745	53.565	58.073 58.072	96.641	101.31	102.19	102.24	100.27			0-10	985 C 104.13	104.4	104.87 104.93	105.2	105.47	106.01	106.27	106.04	105.32	!
	,	ses C degr	37.146	7.948 9.106	5,414	7.126	6.523	9.849	00.23			1-150-1	Nes C degr	01.61	02.41	02.82	03.62	03.64	90.00	03.68	03.57	103.27	21.20			١,												99.119			0-9 T-1	esC degn 33.11	33.33	33.49	33.83	33.99	74.35	04.49	104.53	33,32	
	3	- 18	36.742 3 37.083 3									HB T-150-9	isC degre	2.49	2.83	103	03.2	3.28	3,43	3.59	3.86 1	282	585		,	-8 I-150-8	3C degre	142 3	261	102	242 3	3.15	928	075 9	9.68	1.16	1.93	99.465			F 1-15	sC degre 3.27 14	3.53	2.5	24.3	1.56	1,95	2.9	104.46	8 2	<u> </u>
	,	- ĕ	36.15 36 36.431 37									-7 T-150-8	SC degree	14	19.	7.2	.69	86 ±	25 10	21 0	01 00	7.9 103.82	99		,	1-150	SC degree	169 37	119 37	163	946 82 41	503	2, 29	126 96	61 19	200	00 00	. 55 55 5 65 55 5 65 55			.7 T-150-8	s C degree .98 10:	21.2	41 00	22	69 27	7.5	65	103.62 10	29 40	ì
	,	-18							- 1				C degree	10	55 20	555 101	389 101	22 102	39 102	12 103	1,5 103	69 102.79	201 20.		457	9	28 degree	903 36.4	36.3	93 37.4	778 40.9	72 57	76 38.5	27 94.6	19 99.5	100	101	309 98.235 45 98.661			6 T-150	C degree 381 102	103	.07 103	33 103	197 103 66 103	23 103	86 103 15 103	31 103	103 139 103	
			45,187									T-150-6	ş									3 102.69				120	C degrees	1 43.5	8 4 8 4	3 59.6	82.0	95.8	8 4 8 8 8 1 2 8	96.2	2 35.8	97.1	1 98.6	5 95.309 9			T-150-6	C degrees 7 98.6	1 98.8	3.68	99.3	99.4	5 99.6	5 99.5	100.31	5 99.8	,
	,	- e	4 46.441									T-150-5	degrees	7 98.30	99.85	7 99.77	100.3	100.6	3 101.4	7 101.8	102.	103.3	8.70.		4	1-150-5	degrees 43.90	3 44.13	6 44 35 4 57 44 35	7 59.74	82.02	96.31	95.89	3 93.17	26.58	97.35	98.60	94.835			T-150-5	degrees (99.42	20:66 1	100.0	100.2	100.6	101.0	100.8	100.4	!
	,	-18	75.114							0END-1		T-150-4	degrees C	104.1	2 2	7.40	105.0	105.1	105.24	105.4	105.54	105.73	5	0060STRT-2		120-4	degrees C 70 18/	70.52	2.40	98.15	99.20	7.86	100,36	100.86	101.8	102.10	102.5	102.9t	END-2		T-1504	degraes C 105.4*	105.59	105.94	106.12	106.28	106.6	106.82	101.54	98.81	İ
		Jegrees C	75.015	97.413	99.081 99.393	99.644	100.23	101.37	101.97	PARAMETERS, 0060END-1		T-150-3	degrees C	104.72	105.01	105.16	105.46	105.61	105.83	105.81	105.78	105.75	5			3	197 es 791	70.231	71.572	98.028	98.592	99.72	100.18	Ē ;	101.82	102.23	102.56	102.82	TERS. 006		50-3	786S C 105,51	105.63	105.67	105.67	105.67	105.67	105.67	102	100.5	
ters			2.117							R PARAME		T-150-2	103 02 1	15 1	104.23	104.54	104.79	104,92	105.17	105.3	105.55	105.81		R PARAMETERS,		k	degrees C d 63.465	62.775	63.93	98.537	99.254	100.3	100.55	101.05	101.20	101.68	102.1	102.52	3 PARAME		T-150-2	egrees C : 105.44	105.54	105.65	105.87	105.98	106.19	106.3	101.87	100.23	
ator Parameters	,	Jegrees C de	70.274	97.442	99.023	99.524	99.987	100.39	100.79	EVAPORATOR		T-150-1	degrees C do	103.77	104.03	104.17	104.43	104.56	104.82	105.08	105.21	105.47	100.64	EVAPORATOR	,			61.688	62.838 96.666	97.881	98,485	99.559	99.893	100.56	101.14	101.35	101.77	102.19	EVAPORATOR PARAMETERS, 0060END-2		T-150-1	legrees C de 104.59	104.76	105.09 26.09	105.25	105.42	105.75	105.91	101.12	99.677	
Evaporator		Time	05 JUN 01 09:30:00 05 JUN 01 09:45:00	101 10:00:00	101 10:30:00	10111:00:00	01 11:30:00	01 12:00:00	101 12:30:00	ш	1	Time	no-ou-s	6:15:00	6:45:00	7:15:00	7:30:00	8:00:00	8:15:00	8:30:00	9:00:00	9:30:00	9:45:00	ш		Time	02.15:00	7:30:00	7:45:00	8:15:00	8:30:00	00:00	9:15:00	09:45:00	10:15:00	0:30:00	11:00:00	11:30:00			Time	00:00:	5:15:00	5:30:00	00:00	30.00	345.00	215.00	JUN 01 17:30:00	45.00	3
			85 JUN 80	NDT 50	NDL 20	AUL SO	NUL 20	98 JUN 98	06 JUN				1 SO	40° 50°	NOT SO	105 JU. 20	OS JUL	90 SU	NUL 20	NO 50	10 30 31 30	05 JUN 01	10° 80				NIII 90	NO 36 JUN	AUC 90	NUL 80	AU 86	NDC 90	VIDE 90	40 PG	9 9	NUL 90	4DF 90	06 JUN 01				NOC 90	NO. 50	57.96 NO.90	NOC 90	NO 90	NUC 90	NUC 90	NOC 90	NOT 90	,

ator parameters.	EVAPORATOR PARAMETERS, 0050STRT-1	
vaporator parameters	Š	
Table D-1. E		

	130-1	50fm 655.38	676.63	629.8	626.7	652.55	628.17	619.94	641.03			736.7	scfm	617.59	637.74	640.39	644.63	623.87	631.34	635.04	643.47	651.51			130.1	schm	635.69	649.32	601.31	634 15	627.71	616.68	647.07	608.78	638.46	613.6	640.44	624.31			130-1	schm	628.93	616.99	628.77	620.8	625.07	624.15	654.52	597.32	663.93	
	130-4-1 F	degrees F 163.16	163.16	163.16	163.15	163.15	163.14	163.14	163.13			20 4.4	degrees F	163.1	163.1	163.09	163.09	163.08	163.08	163.08	163.07	163.07			420.4.4	degrees F	162.98	162.96	162.96	162.95	162.94	162.93	162.92	162.91	162.9	162.89	162.87	162.87			5304.1	degrees F	162.78	162.77	162.75	162.75	162.74	162.73	162.72	162.71	162.7	
	30-3-1 T.	98,201	98.204	98.212	98.219	98.223	98.231	98.238	98.242			+ + + + + + + + + + + + + + + + + + + +	egrees F	98.291	98.298	98.302	98.31	98.313	98.321	98.325	98.332	98.34			70.2.4	earnes F	98.865	98,867	98.869	98.87	98.873	98.874	98.876	98.879	98.88	98.883	98.885	98.887 98.888			70.21	egrees F	98.904 98.906	98.907	98,908	98.911	98.912	98.915	98.916	98.918	38.35	
	30-2-1 T-1	104.8	104.8	104.81	104.82	104.82	104.83	104.83	104.84				agrees F o	104.89	104.9	104.9	104.91	104.91	104.92	104.92	104.93	104.94			0.24 T.4	d Family	105.56	105.56	105.56	105.56	105.56	105.56	105.56	105.56	105.58	105.56	105.56	105.56			0.2.1 T.4	grees F d	105.56	105.56	105.56	105.56	105.56	105.56	105.56	105.56	105.05 35.05	
	30-1-1 T-1	104.74 d	104.74	104.74	104.74	104.74	104.75	104.75	104.75				dees F d	104.77	104.77	104.77	104.77	104.77	104.78	40 87.40 87.80	104.78	104.78			0.4.4 T.45	drees F de	105.66	105.65	105.65	105.65	105.65	105.65	105.64	105.64	105.84	105.64	105.64	105.63			D-1-1	grees F de	105.62	105.61	105,61	105.61	105,61	105.61	105.6	105.6	105.6	
	T-335-2 T-1	egrees F d 182,63	182.63	182.62	182.61	182.61	182.6	182.59	182.59 182.58			4 1 4	p J searba	192.53	182.52	182.52	182.51	182.51	182.5	182.5	182.49	182.48			T. 22K.2 T.4	acrees F de	183.33	183.33	183.33	183.32	183.32	183.32	183.32	183.31	183.31	183.31	183.3	183.3			1335.9 T.45	grees F de	183.28	183.27	183.27	183.27	183.27	183.26	183.26	183.26	183.26	
1	1304	NWC 4	8.341	8.3407	8.3405	8.3402	8.3399	8.3396	8.3394 8.3393		ı		IN MC	8.3375	8.3371	8.337	8.3367	8.3365	8.3362	8.3361	8.3358	8.3355		ļ	130.4	NWC de	8.4546	8.4597	8.4622	8.4647	8.4698	8.4656	8.4591	8.4517	8.448	8.4405	8.4368	8,4294		I	130-1	N NC	8.3773	8.3699	8.3624 8.3624	8,3587	8.355	8.3476	8.3438	8.3364	8.3327	
	PD-130-4-1 PD	ž	2.0473									00 110 11	IN MC	2.045	2.0448	2:0447 2:0446	2.0445	2.0444	2.0441	2.044	2.0438	2.0436			00.430.4.4	IN MC	2.0152	2.0151	2.015	2.015	2.0149	20149	2.0148	2.0147	2.0147	2.0146	2.0145	2.0145			PD:130-4.1	IN WC	2.0139	2.0138	2.0137	2.0137	2.0136	2.0135	2.0135	2.0134	2.0134	
	D-130-3-1	N WC	00	0	00	00		00	00			4.00	N WC	00		00	0		•	00		0			0.430.3.4	N NC		0	0	00		00	0	0	00		00	00			130.34	IN WC	00	0	50	0	00	0	00	004	0	
	130-2-1 P	IN WC -0,056	-0.056	-0.056	0.056	0.056	0.056	9600	-0.056			1000	IN WC	-0.056	-0.056	95000	0.056	9000	-0.056	0.056	0.056	-0.056			100.3.4	N WC	950.0-	-0.056	-0.056	0.056	-0.056	950.0	-0.056	-0.056	-0.056	-0.056	-0.056	-0.056			30-2-1	IN WC	-0.056 -0.056	-0.056	90.05	-0.056	9500	-0.056	9500-	-0.056	-0.056	
	30-1-1 PD.	N WC 0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008			2011	N WC	0.008	0.008	0.008	0.008	0.00	0.008	0.008	0.008	0.008			10.4.4	N WC		0.008	0.008	0.008	0.008	0.008	0.00	0.008	0.008	0.008	0.008	0.008			30-1-1 P.D.:	NWC	0.008	0.008	0,008	0.008	0.008	0.008	0.008	0.008	0.008	
	130-2 PD-	wcvac 48,689	48.69	48.693	48.696	48.698	48.701	48.704	48.706			200	wevac	48.725	48.729	48.73	48.733	48 736	48.738	48.739	48.742	48.745			30.2 BD.4	MCVac	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7			30.2 PD-1	Mcvac	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	
	122-1 P.	71.384	11.382	11.379	11.375	11.373	11.37	11.367	11.365			133.4	wcvac	11.343	11,339	11.338	11.334	11.331	11.329	11.327	11.324	11.321			423.4 B.4	WCV8C	8.0286	8.0302	8.0309	8.0317	8.0333	11.448	11.445	11.439	11.436	11,431	11.425	11.422			122-1 P-1	wcvac	11.377	11.374	11,368	11.365	11.362	11.356	11.353	11.347	11.345	
	F 136-1 P	sofm 171.82	170.91	169.09	167.26	165.44	164.54	162.72	161.81			E 436 4 D	sclm	163.34	163.63	163.92	164.06	164.35	164.5	164.64	164.93	165.22			E 476.1 D.	scfm	6.42 11	156.57	156.65	156.73 156.8	156.88	156.77	156.51	156.26	156.13	155.87	155.62	155.49			F 136.1 P.	Schm	153.7	153.44	153,19	153.06	152.93	152.68	152.55	152.29	152.16	
	-336-1C	egrees F 77.948	77.962	77.99	78.018	78.033	78.061	78.089	78.103			336 40	egrees F	78.288	78.316	78.33	78.358	78.387	78.401	78.429	78.444 78.45B	78.472			T.236.4C	agrees F	74.848 15	74.802	74.78	74.757	74.712	74.689	74.765	74.875	74.929	75.039	75,149	75.204			338-10	grees F	75.972	76.082	76.137	76.247	76.302	76.411	76.466	76.576	76.631	
F350-1	steam flow	our 4.2814	678.65	1522.7	1723.3	1729.2	1729.6	1730	1732.5		F350-1	vaporator	our	1731.7	1736.1	1732.4	1745.4	1728.6	1730.2	1725.9	1729.7	1723.2		F350-1	evaporator	1	2.732	-2.587	-2.514	4.5011	-11.47	-10.86	1722.1	1733.4	1730.3	1730.5	1718	1713.3		F350-1	evaporator steam flow	anc de	1738.9	1727.5	1726.9	1735.3	1724.9	1729.2	1731.6	1725.7	1724.1	
١,	level s	es 136.8	136.74	136.68	136.81	130.55	126.72	118.31	114.36		1.150-1	evaporator e	es Ibh	132.43	134.6	133.81	132.47	132.18	133.08	134.24	134.52	135.36		-150-1	aporator e	18	137.02	136.97	136.94	136.92	136.87	136.84	137.05	136.35	132.79	125.09	116.68	113.27		1-150-1	5	10	33.55 133.21	132.65	130.75	129.79	129.29 129.8	131.13	134.76	134.71	28.50	
150-1	nsity	ĒΈ	1.1737	1,1716	1,1542	1.1634	1.1674	1.1758	1.1798		150-1	orator	ig (m)	-	1,2377	1.2416	1.2493	1.257	1.2609	1.264/	12724	1.2802		1-051	orator ev	/ml lnch	-	1,1746	1.1742	1.1737	1.1729	2 1 2 2 2	1.1643	1.1582	1.158	1.1675	1.1755	1.1834 1.1834		50-1	orator	E E	1.235	1.243	1.2509	1.2549	1.2589	1,2668	1.2707	1,2787	1.2827	
	ep e										à	evap	1											Z	evap	1															evap											
	T-150-10	degrees C 42.81	42.887	52.693	84.708	98.99	100.69	102.09	102.49 99.678			450-40	D seamed	102.44	103.12	103.56	104.05	104.43	104.54	104.65	104.71	104.83			T.450.40	degrees C	42.859	42.94	42.98	43.02	43.323	50.57	59.538	91.101	99.397	100.6	101.25	101.25 98.961			T-150-10	degrees C	102.8	103.23	103.65	103.87	104.08	103.68	103.38	104.14	103.98	
	T-150-9	degrees C 41.993	42.053	50.83	82.498	93.391	99.357	100.29	99.932 97.966			450.0	Jrees C	100.95	101.64	102.07	102.53	102.88	102.95	103.04	103.08	103.17			1,150.0	Segrees	41.857	41.937	41.977	42.017	42.285	42.861	57.829	89.382	95.776	99.411	100.03	99.637			50.9	Sees C	101.4	101.84	102.06	102.5	102.61	102.13	101.88	102.63	102.52	
			43.437									T-450.8	degrees C	101.38	102.07	102.61	102.76	103.06	103.21	103.26	103.28	103.31			1.150.8	degrees C	41.541	41.634	41,681	47.727	47.149	53.489	62.969	91.678	96.428	99.671	100.62	100.02			1.150-8	1egrees C	101.68	102.24	102.72	102.83	102.94	103.15	103.26	103.48	103.5/	
	T-150-7	degrees C 41.697	42.467	55.84	86.41	93.33	98.815	100.34	99.844			5	es C	30.55	101.3	11.67	32.08	22.39	15.51	12.53	22.58	29.20			T-150-7	Searces C	41.619	41.706	41.75	47.793	47.058	52.842	62.168	90.481	95.004	98.745	99.37	99.347			1.450.7	egrees C	100.07	100.46	100.65	101.04	101.23	101.62	101.77	101.89	ce:101	
	امر	ပေး	72.726	8 :	2 % ∶	ాజ	20 1	3.2	28 28			1.450.6	egrees C	96.842	97.973	98.504	99.52	99.857	100.03	100.36	100.68	101.47			7.150.6	degrees C	44.603	45.105	45.355	81.871	82.282	88.584 88.584	95.903	95.028	92.831	94.642	96.284 96.284	94.091			T-150-6	egrees C d	97.938	98.04	98.245	98.347	98.449	98.654	98.756	99.543	98.95	
	T-150-5	egrees C o 8.512	72.472	95.398	95.462	93.73	94.819	96.983	98.065 96.221			7-450-5	egrees C d	97.056	98.181	98.705	99.751	100.16	100.34	100.52	101.05	101.88			1.450.5			45.428	45.729	81.727	83.274	70.97	96.187	95.347	92.993	94.977	95.883 96.801	94.604			150.5	grees C d	97.869 98.17	98.47	98.78	98.902	99.024	99.267	99,388	100.12	100.	
TRT-1	T-150-4	6.902	98.593	99.386	100.08	100.63	100.85	101.3	101.53	ğ		7 120 4	degrees C d	103.67	103.94	2 4 5 5 4 5 5 4 5	104.48	104.83	105.01	105.18	105.54	105.89	TRT-2		. 450.4	Ges C	73.277	69.758	68.417	97.059	94.656	92.682	99.065	99.672	99.932	100.35	100.77	100.98	9	7D-2	T-150-4	rees C	103.64	103.8	103.96	104.28	104.44	104.76	104.92	104.7	104.49	
ERS, 0050STRT-1	150-3	grees C de 96.931	98.194	99.643	100.11	100.56	100.75	101.14	101.33	ETERS ORFORDS.		Š	oes C	103.83	104.22	104.6	104.79	105.18	105.29	105.47	105.49	105.62	ERS, 0050STRT		150.3	areas C de	72.958	69.332	68.129	97.328	94.831	92.62	98.711	99.459	100 13	100.46	101.13	101.46		RS, 0050END-2	450-3	prees C de	104.04	104.48	104.92	105.02	105.12	105.32	105.42	105.62	105.71	
PARAMETERS	150-2 T	grees C de 97.913	98.768	99.984	100.49	100.74	101.12	101.48	101.66	MAGAG		1	rees C de	103.84	104.09	104.22	104.47	104.72	104.85	105.1	105.23	105.48	PARAMETERS,		150.2	rees C dec	71.629	67.129	65.437	97.79	95.214	93.392	99.22	99.94	100.25	100.87	101.31	101.45		PARAMETE	150-2	ees C	2 8	818	34	8	28	8 9	88	104.12	2	
EVAPORATOR	-150-1 T	grees C de, 96.912	97.748	99.139	99.876	100.19	100.64	101.07	101.28	act Accor	20150	AKO 1	grees C deg	103.3	103.55	103.62	103.74	103.85	103.91	104.07	104.07	104.19	EVAPORATOR		Jen T.	27965 C deg	69.962	65.488	63.843	97.019	94.106	93.396 96.239	98.618	99.281	99.537	100.05	100.56	100.82		EVAPORATOR PARAMETERS,	450-1	o O sae	102.78	102.96	103.06 103.15	103.24	103.34	103.52	103.62	103.81	103.9	
۵	Time	JUN 01 08:00:00	07 JUN 01 08:15:00 07 JUN 01 08:30:00	JUN 01 08:45:00	JUN 01 09:15:00	JUN 01 09:45:00	JUN 01 10:00:00	JUN 01 10:30:00	JUN 01 11:00:00	à	5	Times		JUN 01 14:15:00	JUN 01 14:30:00	JUN 01 14:45:00	JUN 01 15:15:00	UN 01 15:45:00	JUN 01 16:00:00	JUN 01 16:30:00	07 JUN 01 16:45:00	JUN 01 17:15:00	EV.		Time		01 07:15:00	01 07:45:00	01 08:00:00	01 08:15:00	01 08:45:00	01 09:00:00	01 09:30:00	1 10:00:00	110:15:00	110:45:00	11:15:00	11 JUN 01 11:30:00 11 JUN 01 11:45:00	Ī	E	T.	ubep	11 JUN 01 15:00:00 11 JUN 01 15:15:00	11 JUN 01 15:30:00	11 JUN 01 16:00:00	11 JUN 01 16:15:00	11 JUN 01 16:30:00	11 JUN 01 17:00:00	11 JUN 01 17:15:00	11 JUN 01 17:45:00	00:00:81 TO NOU LE	

and D-1. Evaporate parallerers.	TOTAL DESCRIPTION OF ACCOUNT

	5cfm 619.42 628.78	619.34 632.23 602.91	616.28	597.75 629.18	630.88	646.2		130-1	sdfm	625.42	614.25	625.14	646.95	652.04	640.08 634.12			130-1	sofm	646.72	652.98	635.85	657.28	658.19	626.94 655.64	620.62 608.99 648.41	643.89		130-1	scfm 649.73 647.23	630.81 662.86	665.6 626.71	666.22 652.62	650.36	656.85 665.31 648.18	650.79	
	159.87	159.85 159.84	159.82	159.81	159.78	159.76		3041	egrees F	159.63	159.61	159.6	159.58	159.56	159.54			30.4.1	egrees F	159.04	159.02	159	158.99	158.97	158.96	158.94 158.93 158.93	158.92		30-4-1 F	egrees F 158.84 158.83	158.82 158.81	158.8 158.79	158.79	158.77	158.75 158.74 158.73	158.73	
j	96.733	96.694 96.694	96.667	96.628	96.602	96.576		15.05	egrees F	96.38	96.354	96.328	96.302	96.275	96.249			30-3-1 T-1	egrees F o	95.492	95.465	95.439	95.413	95.387	95.374 95.361	95,348 95,335 95,322	96,309		30-3-1 T-1	agrees F d 95.191 95.178	95.165 95.152	95.139 95.126	95.113 95.1	95.086	95.06 95.047 95.034	95.021 95.008	
;	102.96	102.94	102.93	102.91	102.89	102.88		30-2-1	egraes F c	102.77	102.75	102.74	102.72	102.71	102.69			30.2.4 T.1	egrees F	102.27	102.26	102.24	102.23	102.22	102.21 102.2	102.19 102.19 102.18	102.17		30-2-1 T-1	102.11 d 102.11 102.1	102.09	102.08	102.06 102.06	102.05	102.03 102.03 102.02	102.01	
,	90rees F d 103.82	103.78	103.75	103.73	103.69	103.66		36-1-1	egrees F d	103.47	103.44	103.41	103.39	103.36	103.34			30.1.1	b Farees d	102.58	102.55	102.53	102.5	102.47	102.46	102.43 102.42 102.41	102.39		30-1-1 T-13	102.28 102.28 102.26	102.25	102.22	102.2 102.19	102.17	102.15 102.13 102.12	102.11	
	degrees F d	181.03 181.03	181.02	181.01	181	180.99		1-335-2 1-4	egrees F d	180.92	180.92	180.91	180.9	180.89	180.88			1,235,2 1,4	egrees F d	180.63	180.62	180.61	180,6	180.59	180.59 180.58	180.58 180.58 180.57	180.57		T-335-2 T-1	egrees F 180.53 180.52	180.52	180.51	180.5 180.5	180.49	180.48 180.48 180.48	180.47	
1	N WC 8.4825	8.4815 8.4815	8.4807	8.48	8.479 8.479	8.4782	ŀ	730-4	IN WC	8.4729	8.4722	8.4715	8.4708	8.4697	8.4693		ŀ	130.1	N WC	8.4487	8,4479	8,4472	8.4465	8,4458	8,4455	8.4447 8.4444 8.444	8.4437	ı	130-1	•					8.4369 8.4365 8.4362		
	130-4-1 FL IN WC 2.053	2.0531	2.0532	2.0533	2.0535	2.0536		130-4-1 PD	N WC	2.0543	2.0544	2.0545	2.0546	2.0547	2.0548			110.4.1 PD	IN WC	2.0675	2.0676	2.0577	2.0578	2.0579	2.0579	2.058 2.0581 2.0581	2.0582		30-4-1 PD	IN WC 2.0586 2.0587	2.0587	2.0588	2.0589	2.059	2.0591 2.0591 2.0592	2.0592	
3	IN WC -0.004	0.003	-0.003	0.003	0.003	-0.003		30-34 PD	IN WC	0.003	-0.003	0003	-0.003	0.003	-0.003			ነሴጊተ PD.	IN WC	0.00	0.00	0.00	0.00	0.00	-0.001	0.00.0 0.000.0 0.000.0	-0.001		30-3-1 PD-	N WG	-0.001	-0.001	-0.001 -0.001	0.001 0	000	00	
	NWC -0.06	0.059	0.059	0.059	60.05	690.0-		30-2-1 PD-1	N WC	60.05	-0.059	-0.059	0.059	-0.059	-0.059			10.3.4 P.D.4	N WC	-0.057	0.057	0.057	0.057	-0.057	-0.057	-0.057 -0.057 -0.057	-0.057		0-2-1 PD-1	4 WC -0.057 -0.057	-0.057 -0.057	-0.057	-0.057	-0.057	-0.056 -0.056 -0.056	-0.056	
,	N WC 0,0085	0.0086	0.0086	0.0087	0.0087	0.0088		30-1-1 PD-1	NWC	0.0091	0.0092	0.0092	0.0093	0.0093	0.0094			10-1-1	N WC	0.0108	0.0108	0.0109	0.0108	0.0109	0.011	0.011 0.011 0.0111	0.0111		10-1-1 PD-13	0.0113 0.0113	0.0113	0.0114	0.0114	0.0115	0.0115 0.0116 0.0116	0.0116	
	48.912	48.914 48.914 48.914	48.915	48.917	48.918	48.92		55 PD-1	cvac	48.929	48.93	48.931	48.932	48.934	48.934			50 PD-1	cvac	48,969	48.97	48.971	48.972	48.974	48.974 48.975	48.975 48.976 48.977	48.977		0-2 PD-13	cvac # 48.963 # 48.983	48.984	48.985	48.986	48.987	48.989 48.989 48.99	48.99	
ì	8.8057	8.8088 8.8104 8.8119	8.8134	8.8165 6.8181	8.8212	8.8242		23-1 P-43	rcvac v	8.8474	8.852	8.8536	8.8567	8.8598	8.8629			2.4 P.13	Z CVBC	8.9524	8.9555	8.9586	8.9617	8.9648	8.9663 8.9679	8.9694 8.971 8.9725	8.9741		2-1 P-13	۶					9.0034 9.0049 9.0065		
	251.75	151.73	151.69	151.65	151.63	151.6		36-1 P-15	-					151.31				36.1 P-13								150.41 150.4 150.39			36-1 P-12						150.12		
,	75.329	75.172	74.937	74.781	74.546	74.649		510	- "					76.324				6-1C	ľ							76.866 76.872 76.878			-	w					77.003		
ator	0.282 8518	465.04 925.33	742.2	725.6	728.8	738.2		tor 04	degr					729.2				tor T-33	degr							733.5	_	2	NV T-336	geg					7747.8 7 1726.4 7 1731.9 7		
F350-	Ib/hour							evapora steam fl	lb/hour				•				F350-	evapora steam fl	lb/hour				, ,	- •-			-	F350-1	steam fix	Inchiour							
L-150-1 evaporator	137.5	137.56	137.8	135.5	123.9	115.5	į	evaporator level	ches	130.7	131.8	132.5	131.3	131.22	131.0		L-150-1	evaporator	ches	136.5	136.6	136.82	136.5	127.0	123.13	115.71 121.08 119.22	118.28	L.150-1	level	798 132.01	131,28	132.14	133.57	134.47	134.08 134.04 133.9	133.74	
0-150-1 evaporator	ē = -	1,1736	1.162	1.1586	1.1674	1.1757	7 937 0	evaporator density	12.	1,2379	1,2503	1.2545	1.2628	1.2711	1.2803		D-150-1	evaporator	E 1	1.1792	1.1761	1.1867	1.1611	1.1684	1,1733	1.1845 1.1901 1.1956	1.2012	D-150-1	density		1.2426	12504	1.2575	1.2639	12734	1.2829	
	degrees C G 44.149 44.21	333	832	368 162	8 8 2	4.			1	328	25 25	N 8	88	104.07	.16 .21					283	3 69 63	257	12.5	38	92	102.54 99.664 100.7	21				85	15	\$ \$	2 2 3	31 87	15 23	
5	C degrees 88 44.	75 05 44 44 49	66 60.	27 98.	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	27 101		1	9									_	C degrees	155	52.4	62.29	1.98	100	7 102	3 102 12 99.6 12 10.	101		T-150-1	2 degrees 2 103.	5 103.	9 104.	7 104.	6 4 6 6 55 6	2 105.31 2 105.59 8 105.87	4 106.	
5	5 degrees C de 42.188	3 42.5	7 58.8	396.6	9 100 1	100								5 102.39 2 102.31				T-150-9								5 100.13 3 98.398 4 99.682			T-150-9	degraees 101.3 102.3	102.6	102.7	103.0	103.3	104.2	104.7	
1	degrees C deg 43.595 43.554	43.71	53.88	81.4	97.08	100.		T-150-8	degrees C	102.3	102.6	102.9	103.0	103.15	103.2			T-150-8								101.5 98.598 99.624			T-150-8	degrees C 101.55 102.63	102.77	103.06	103.34	104.04	104.33 104.62 104.9	105.19 105.37	
1	- 8	43.487						1-150-7	degrees C	100.73	101.12	101.52	101.91	102.31	102.49			1-150-7	degrees C	41.303	46.395	66.713	92.692	98.574	100.29	97.87 99.056	7:66		T-150-7	100.98 101.89	102.54	102.67	102.92	103.3	103.35 103.35 103.36	103.37	
1450	degrees C 46.878	66.66 95.999 93.726	95.51	94.083	95.99	97.92		7-150-6	degrees C	97.241	97.757	98.139	98.521	98.903	99.285			1-150-6	0 5	49.344	90.707	96.65	94.511	94.615	95.721	97,933 96,688 96,042	97.065		T-150-6	97.229 97.692	98.155	98.966	99.634	100.64	101.22 101.22	100.89	
1.150.5	degrees C 47,546 47,993	65.411 86.11 94.438	95.942	93.246	96.89	98.42		T-150-5	degrees C	96.352	98.846	99.261	99.558 99.671	99.783	100.01			T-150-5	degrees C							97.847 96.682 96.349			50.5	7.639 8.114	8.588 9.022	9.365	00.05	90.73	01.41 01.41 101.3	01.18	
1.4504	degrees C degrees 66.442 4 95.586 4	97.115 97.913 98.71	99.055	100.47	101.64	102.34	10END-1	T-150-4	degrees C	103.57	103.91	104.24	104.58 104.75	104.74	104.19	0010STRT-2		T-150-4	egrees C	96.755	98.603	99.611	100.19	100.64	100.87	101.55 101.55 101.78	50	70N	T-150-4	103.92 104.1	104.27	104.62	105.15	105.32	105.87 105.85 106.02	106.19	
TERS, 0010ST	degrees C c 66.25 96.059	97.024 97.711 98.399	99.041	99.697 100.14	101.8	101.89	8	2	I٧					105.06				1-150-3	grees C	96.902	98.382	99.54	100.13	100.63	101.08	101.54 101.77	8	EKS, OUTDEND-2	50-3	03.94 104.12	104.48	104.66 104.84	105.02	105.37	105.91 106.09	106.27 106.44	
PARAM 160.3	degrees C de 60.965 96.383	97.755 98.417 99.08	99.398	100.02	100.67	101.1	PARAMET	150-2	grees C de	103.65	104.08	104.13 104.17	104.22 104.26	104.35	104.44	PARAMETI		150-2 T	grees C deg	97.633	98.086	100.02	100.63	101.1	25.25	101.76 101.98 102.2	102.43	PAKAMEI	150-2 T-1	104.17 104.35	104.53	104.88 105.05	105.23	105.76	106.11 106.28	106.46	
EVAPORATOR T-150-1 T-	degrees C de 59.957 95.718	96.731 97.429 98.127	98.678 99.167	99.657 100.15	100.89	101.38	EVAPORATOR PARAMETERS,	2						103.93		EVAPORATOR PARAMETERS,		T-150-1 T-	grees C de	96.539	98.288	99.382	99.984	100.45	100.91	101.14 101.37 101.6	101.84	EVAPORATOR PARAMETERS	150-1 T-1	103.71 103.89	104.07	104.42 104.6	104.78 104.96	105.14	105.67 105.85	106.03	
Time	98:30:00	18 JUN 01 09:00:00 18 JUN 01 09:15:00 18 JUN 01 09:30:00	9:45:00	0:30:00	1500	1:30:00	EV.	Time 7-	IIN 01 15:00:00	N N	UNO	5 N O	50 NO 10 NO 10 NO	18 JUN 01 17:15:00 18 JUN 01 17:30:00	5 S	EV		Time	00-00-00 FO MIII	UN 01 08:15:00	UN 01 08:45:00	UN 01 09:15:00	UN 01 09:45:00	UN 01 10:15:00	UN 01 10:30:00	19 JUN 01 11:00:00 19 JUN 01 11:15:00 19 JUN 01 11:30:00	UN 01 11:45:00	Ĭ.	Time T-	01 14:00:00	01 14:30:00	11 15:00:00	11 15:30:00	7 16:00:00	19 JUN 01 16:45:00	N 17:15:00 N 17:30:00	

	1
ø	
¥.	
8	
×	
ē	
=	
짤.	
_	
2	
9	

F-136-1 5-34 6-33 45 6-33 45 6-35 12 6	Fri30-1 seffin 656 25 653 39 653 39 653 39 653 39 653 45 632 72 643 51 644 35 644 35 644 35	scfm scfm 647.72 647.72 662.82 662.83 660.87 660.87 662.74 672.74	schn schn 649.24 649.24 638.51.74 675.28 675.28 677.24 674.34 671.63 673.64 671.63 673.64 673.64 673.64
13041 degrees F 158.83 158.84 158.84 158.84 158.86 158.86 158.86 158.86 158.86 158.86	degrees F degrees F degrees F degrees F degrees F degrees F degrees F degree F degre	13041 Cegres 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1104-1 degress F 168 22 158 22 158 22 158 23 158 24 158 24 158 24 158 24 158 24 158 24 158 25
130-3-1 degrees F 95,541 95,544 95,544 95,546 95,558 95,558 95,558 95,558 95,558 95,558	130.5.1 degress F 55.581 95.581 95.585 95.586 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59 95.59	130.3.1 Cogness F Cogness	150-3-1 T C400000 F C4000000 F C4000000 F C400000 F C4000 F F C4000 F C4000 F F C4000 F F C4000 F F C4000 F F C4000 F F C4000 F F C4000 F F C4000 F F C4000 F F C4000 F F F C4000 F F F C4000 F F F F F F F F F F F F F F F F F F
130-2-1 T- degrees F 101-9 101	196.2-1 T. Gegrees F T. C. C. C. C. C. C. C. C. C. C. C. C. C.	140-2-1 T- Copyright (140-2-1) (140-	1992-1 1-1 1992-1 1-1 1992-1 1-1 1992-1 1993
130-1-1 T- 19gress F 102.14 102.14 102.17 102.17 102.18 102.21 102.23 102.23 102.23	130-1-4 Tr. Pagess F (102.34 (102.38 (102.38 (102.38 (102.38 (102.38 (102.38 (102.38 (102.48 (139.4.1 T-1 139.4.1 T-1 139.4.1 T-1 13.9.3 T-1 13.9.3 T-1 13.9.3 T-1 13.9 T	130-1-1 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-1
1.335.2 1-4.335.2 1-5.355.2 1-5.355.	18.05 T General Fig. 18.05 T General Fig. 18.05 T General Fig. 18.05 T General Fig. 18.05 T General Fig. 18.05 T General Fig. 18.05 T General Fig. 18.07 T G	180.76 180.75 180.75 180.76 180.76 180.76 180.76 180.76 180.76 180.76 180.76	7.335.2 T- leguese F 180.77 180.77 180.77 180.78 180.78 180.78 180.78 180.78 180.78 180.78 180.78
PD-130-1 IN WC 8,66697 8,66697 8,66697 8,66697 8,66698 8,66698 8,6673 8,6673 8,6673 8,6673 8,6696 8,6696 8,6696 8,6696 8,6696 8,6696	IN WC 20139-1 IN	0-130-1 N. 150-1 N	0.5577 0.55677 0.55677 0.55677 0.55578
N WC 21159 21159 21159 21159 21152 21152 21152 21152 21154 21154 21154 21154 21154 21154 21154 21154 21155 21152 21154 21155 2	13841 F N WC N WC N WC N WC N WC N WC N WC N	PD-1304-1 NWC NZ 1005 Z 1004 Z 1003 Z 1008-8 Z 1008-8 Z 1008-8 Z 1098-8 Z 1	1394-1 1404-1
N WC 0	14.4.0	PA	N. V. V. V. V. V. V. V. V. V. V. V. V. V.
P.2.1 PD-1 (WC) (WC) (WC) (WC) (WC) (WC) (WC) (WC)	7.24 Pt-17 P	1.2.1 PD:1; WVC UG65 UG65 UG65 UG65 UG65 UG66 UG66 UG66	2.2.2. WWC PD+1; 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056
1.1 PD-130 VC NC NC NC NC NC NC NC NC NC NC NC NC NC	1.1 PP.131	1.1 PD-130 N	PD-130 C C C C C C C C C C C C C C C C C C C
PD-130- ac IN V 148.8 IN V 1798 7.98 7.96 7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95	Pb-130- 10 N N N N N N N N N N N N N N N N N N N	PP 14-14-14-14-14-14-14-14-14-14-14-14-14-1	PP-136-1-4
20% 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Website 1992 Website 1993 We	MVN6 MVN6 48 738 48 738 48 738 48 732 48 732 48 732 48 732 48 732 48 732 48 732 48 732 48 732 48 732 48 733 733 733 734 735 735 735 735 735 735 735 735 735 735	P.1362 WO-2016
PAT22-1 Nevac 8.9506 9.0915 9.2733 9.5733 9.5519 9.5319 9.5319 9.5319 11.4807 11.407	P-122-1 Wedde (10.753) (10.753) (10.753) (10.753) (10.753) (10.753) (10.654	P-122-1 Wovae 11.565 11.555 11.557 11.543 11.543 11.543 11.543 11.543 11.543 11.543 11.543 11.543 11.543 11.543 11.544 11.544 11.544 11.544 11.544	5-122-1
1546 1524 1524 1524 1534 1534 1534 1545 1546 1546 1553 1553 1553 1553 1553 1553 1553 155	sofm sofm 161.03 161.45 161.45 162.85 162.85 162.85 162.85 162.85 163.86 163.04 165.04 165.04 165.04 165.04 165.04 165.04 165.04 165.04 165.04 165.04 165.04	scfm scfm 166.26 166.16 166.16 165.79 165.79 165.79 165.73 165.74 165.74 165.75 165.75 165.75 165.75 165.75 165.76 165.76	F136-1 sefm sefm 164.23 164.16 163.89 163.89 163.89 163.85
T-336-1C degrees F 74.085 74.085 74.227 74.227 74.227 74.227 74.325 74.325 74.464 74.564 74.564	1-338-1C degrees F 75 269 77 2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7-336-1C degrees F 76 307 76 307 76 307 76 307 76 307 76 408 76 418 76 7
F336-1 stem flow hour 1.56 -0.378 128.43 128.43 1728.41 1728.41 1737.41 1737.5 1737.5 1737.5 1737.5 1737.5 1737.5	F3361 weighorster from the first from frow from from from from from from from from	F336-1 faam flow rour 1,6150 8,6779 701 28 1405 8 1723 8 1723 8 1724 8 1724 8 1724 8 1724 7 1724 8 1724 7 1724 8 1724 7 1725 9 1739 1732 7 1734 1735 7 1735 7 1736 7 1737 1738 7	F386-1 Stan flow Four T28.3 1728.3 1728.4 1728.4 1728.4 1728.6 1728.6
L-150-H Invel Invel Invel 136.85 136.85 136.85 136.85 136.41 137.28 137.28 137.28 137.28 137.28 137.28 137.28 137.28 137.28 137.28 137.28 137.28 137.28	150-1 190-160-1 190-160-1 190-160-1 190-160-1 190-160-1 190-160-1 190-160-1 190-160-1 190-160-1 190-1 190-1 190-1 190-1 190-1 190-1 190-1 190-1 190-1 190-1	1.156.4 1.156.4 1.156.5 1.156.5 1.156.5 1.156.5 1.156.3 1.1	L'160-1 level September S
900-1	64 14 14 14 14 14 14 14	64 March 1997	94 P. 209
DS-1800 evapora densiria Grams/ma	Gramson Gramson Gramson Gramson	Del 160 density Germann	evape Grams/fi
7-150-10 degrees C degrees C 36.002 36.003 36.004 36.474 36.474 36.474 36.474 36.474 36.474 36.474 36.005 10.222 10.222	L-156-10 degrees C 102.93 104.13 104.13 104.5 104.5 105.82 105.82 105.82 105.82 105.82	17-150-10 dayress C 38.44-1 38.814-1 40.115-10 10.05-10 1	T-150-10 Obgress C 102.38 102.38 102.38 103.25 103.25 103.25 103.25 103.25 104.45 104.45 104.47 105.7 105.7 105.7 105.7 105.7 105.5
T-156-8 degrees C 34.667 34.867 35.136 35.136 37.759 46.365 60.963 81.417 98.06 98.06 99.814 100.91	17-150-8 degrees C 101.53 102.39 102.39 102.39 103.09 103.09 103.09 104.02 104.03 104.03 104.03 104.03 104.03 104.03 104.03	17150-9 17150-	1-156-6 6099085 C 1011 A 1012 A 102 A 102 A 103
7-150-8 33-555 33-555 33-929 4-2-857 42-857 42-857 42-857 86-044 96-044 96-644 96-644 100-24 100-24	T-150.8 T-100.24 degrees C	17-150-6 degrees C d 37-289 37-289 37-289 38-54-6 53-1457 59-346 99-864 101.101 101.158 98-81 101.158 98-81 101.158 98-81 101.158	7-156-8 102 03 102 03 102 03 102 03 102 03 102 03 103 103 103 103 103 103 103 104 104 104 104 104 104 104 104 104 104
7.156.7 1 1-156.7 1 23.865 33.189 33.574 36.241 42.124 42.124 42.124 86.333 87.03 87.03 87.03 87.03 10.054 100.54 101.27	1-156.7 7 66.00 66	7.156.7 7 6.00 6.00 6.00 6.00 6.00 6.00 6.00	T-156.7 T. (156.
17.150-6 17.	T-150-6 T-150-6 dispuses C dog 97-254 gr 723-4 gr 753-9 g	17150-6 17-17-17-17-17-17-17-17-17-17-17-17-17-1	1-154-6 94-747 ag 94-747 ag 98-748 a
150-5 T-1 grees C dugg 40-55 41-155 54-666 54-666 54-666 94-97-217 97-217 97-375 98-375 98-732 98-732 98-732 98-732 98-732 98-732 98-732	000400-004000-04	222 7 4493 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
0 2 7 8 8 7 8 8 9 9 9 9 9 1 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4 1-150-5 4 1-150-5 40.01 40.198-6 40.02 40	924 1-146-5 1994 1-146-5 1995 1994 1-146-5 1995 1995 1995 1995 1995 1995 1995 19
1 T-150-4 C degrees 64-39 B	2. T-150-4 2. T-150-4 3. T-150-4	003157F77.2 2 7150-4 3 7	034EN
T-150-3 T-15		METERS, 0031517 1.156.3 7-7 1.057.6 7-7 1.057.7 7-7 1.007.3 7-7 1	
1100 FARAMETE 1480.2 Tr deprese C deg 85.153 98.077 98.077 100.39 100.38 100.38 101.38 101.38 101.38 101.38 102.03	EVAPORATOR PARAMETERS. 1-156-1 T-158-2 T-150 rigures. C degrees of 48-75 rigures. C d	PUADORATOR PARAMETERS. T-159-1 T-150-2 T-150-0 61.74 2.296 98. 61.74 2.296 98. 61.74 2.296 98. 61.74 2.296 98. 61.74 2.296 98. 61.74 2.296 98. 61.74 2.296 98. 61.74 10.74 10.10 10.12 10.12 10.12 10.12 10.12 10.13 10.22 10.13 10.13 10.23 10.23 10.13 10.23 10.23 10.13 10.23 10.23	EVAPORATOR PAGAMETERS, T-159.
T-150-1 degrees C degrees C degrees C 8-296 98-273 98-844 99-861 100.071 100.59 100.59 101.16 101.173			EVAPORA1 T-156-1 degrees C 103.72 103.72 104.49 104.49 104.89 104.89 105.07 105.06 106.04 106.04 106.04
Time JUN 01 08-00000 JUN 01 08-00000 JUN 01 08-00000 JUN 01 08-00000 JUN 01 08-00000 JUN 01 08-00000 JUN 01 08-00000 JUN 01 10-00000 JUN 01 10-00000 JUN 01 10-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000 JUN 01 11-00000	Time JUN 01 142000 JUN 01 145000 JUN 01 145000 JUN 01 145000 JUN 01 1550000 JUN 01 1550000 JUN 01 1550000 JUN 01 15500000 JUN 01 15500000 JUN 01 15500000 JUN 01 15500000 JUN 01 155000000 JUN 01 15500000000000000000000000000000000	Time JUN 01 08:150 JUN 01 08:150 JUN 01 08:150 JUN 01 08:150 JUN 01 08:150 JUN 01 08:150 JUN 01 08:150 JUN 01 18:150 JUN 01 11:500 JUN 01 11:500	Time 01 13:30:00 01 13:30:00 01 13:45:00 01 14:00:00 01 14:00:00 01 15:00:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00 01 15:15:00
2 2 1 L S S S S S S S S S S S S S S S S S S	2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 100	2 2 10 N